Понятие об эмбриональном кроветворении. Особенности кроветворения у детей

Актуальность темы. Гемопоэза ребенка свойственны закономерные физиологические возрастные изменения, которые необходимо учитывать при оценке гемограммы. Кровь, соединяя между собой все внутренние органы и системы, является одним из важнейших показателей состояния организма человека. Умением оценить гемограмму должны обладать врачи разных специальностей.

Цель занятия. Изучить особенности гемопоэза у детей разного возраста, уметь оценить состояние кроветворной системы в разные периоды детства и определить симптомы поражения органов кроветворения.

В результате самостоятельной подготовки студент должен знать:

1. Этапы внутриутробного кроветворения.

2. Особенности периферической крови новорожденного ребенка.

3. Возрастные особенности эритроцитарной звена.

4. Возрастные особенности лейкоцитарной звена, д. Возрастные особенности тромбоцитарного звена.

6. Возрастные изменения миелограмы.

7. Основные показатели коагулограммы.

В результате изучения темы студент должен уметь:

1. Оценить гемограмму ребенка любого возраста.

2. Распознать симптомы поражения кроветворной системы.

3. Определить патологические изменения в миелограмме ребенка.

4. Определить патологические изменения в коагулограмма ребенка.

Основная литература

Чеботарева В.Д., Майданников ВТ. Пропедевтическая педиатрия. - М.: Б. и., 1999. - С. 179-189.

Мазурин AB, Воронцов И.М. Пропедевтика детских болезней. - СПб.: "ИздательствоФолиант", 2001. - С. 583-622.

Капитан Т.В. Пропедевтика детских болезней с уходом за детьми. - М. - Винница, 2002. - С. 480-545.

Дополнительная литература

Медицина детства / Под ред. П.С. Мощич: В 4 т. - М.: Здоровье, 1997. - Т. 3. - С. 229-231.

Гематологические болезни у детей / Под ред. М.П. Павловой. - Минск: Вышэйшая шк., 1996. - С. 5-22.

Вспомогательные материалы

1. Этапы кроветворения во внутриутробный период.

2. Особенности кроветворения у детей разного возраста.

3. Особенности основных показателей крови у детей разного возраста.

4. Гемограмма здоровых детей разного возраста.

5. Уровень факторов свертывания крови и показателей антикоагулянтной и фибринолитнчнои систем у новорожденных и сроки их рост до уровня взрослых.

6. Основные лабораторные диагностические критерии обеспеченности железом.

7. миелограмы у детей разного возраста.

8. Семиотика нарушений системы крови.

9. Типы кровоточивости при геморрагическом синдроме.

10. Методика исследования кроветворной системы у детей.

Этапы кроветворения во внутриутробный период

3-6-я неделя - кроветворения в желточном мешке (образование примитивных эритробластов).

6-я неделя - 5-й месяц - печеночная кроветворения (образование эритроидных клеток, нейтрофилов, мегакариоцитов) с постепенным угасанием в конце внутриутробного периода.

12-я неделя - 5-й месяц - печеночно-селезеночное кроветворения (в селезенке образуются лимфоциты и моноциты).

С 4-го месяца начинается костномозговое кроветворения, которое к концу вутришньоутробного периода и в течение всей жизни становится основным.

Особенности кроветворения у детей разного возраста

У новорожденного гемопоэз осуществляется в красном костном мозге всех костей. После 4-летнего возраста красный костный мозг постепенно превращается в желтый. В возрасте 12-15 лет кроветворения сохраняется только в костном мозге плоских костей, ребер, телах позвонков, проксимальных концах плеча, предплечья, бедренной кости. У детей раннего возраста отмечается функциональная лабильность кроветворной системы. Под влиянием неблагоприятных факторов возможно возвращение к эмбрионального типа кроветворения с появлением в костном мозге миелоидной и лимфоидной метаплазии.

У плода происходит постоянное нарастание числа эритроцитов, содержания гемоглобина, количества лейкоцитов. Если в первой половине внутриутробного развития (до 6 месяцев) в крови преобладает количество незрелых элементов (эритробластов, миелобластов, про– и миелоцитов), в дальнейшем в периферической крови определяются преимущественно зрелые элементы. К рождению фетальный гемоглобин составляет 60 %, взрослого – 40 %. Примитивный и фетальный гемоглобин обладает более высоким сродством с кислородом, что важно в условиях сниженной оксигенации крови плода в плаценте. У взрослых половинное насыщение гемоглобина кислородом наступает при его парциальном давлении ниже 27 торр, у ребенка достаточное парциальное давление кислорода – менее 16 торр.

Длительность жизни эритроцитов у новорожденных в первые дни составляет 12 дней, что в 5–6 раз меньше средненормальной длительности жизни эритроцитов у детей старше 1 года и взрослых. Количество гемоглобина резко уменьшается в течение первых месяцев жизни, снижаясь к 2–3 месяцам до 116–130 г/л, что расценивается как критический период жизни. Своеобразие этой анемии, называемой физиологической, заключается в ее связи с ростом и развитием ребенка. Тканевая гипоксия при этой анемии стимулирует формирование механизмов регуляции эритропоэза, последовательно повышается число ретикулоцитов, затем эритроцитов и гемоглобина.

К середине первого года эритроцитов 4 х 109/л, а содержание гемоглобина достигает 110–120 г/л. Число ретикулоцитов после первого года снижается до 1 %. В процессе роста наибольшие изменения происходят в лейкоцитарной формуле. После первого года вновь увеличивается число нейтрофилов, лимфоциты снижаются.

В возрасте 4–5 лет происходит перекрест в лейкоцитарной формуле, когда число нейтрофилов и лимфоцитов вновь сравнивается. В дальнейшем нарастает число нейтрофилов при снижении числа лимфоцитов. С 12 лет лейкоцитарная формула не отличается от таковой взрослых. На первом году жизни число нейтрофилов, наибольшее у новорожденных, становится наименьшим, затем вновь возрастает, превышая 4 х 109/л в периферической крови. С 5 до 12 лет содержание нейтрофилов крови ежегодно растет на 2 %. Абсолютное число лимфоцитов на протяжении первых 5 лет жизни высокое (5 х 109/л), после 5 лет их число постепенно снижается, также снижается и количество моноцитов.

2. Особенности кроветворения у детей

Особенногсти эмбрионального кроветворения:

1) раннее начало;

2) последовательность изменений тканей и органов, являющихся основой формирования элементов крови, таких как желточный мешок, печень, селезенка, тимус, лимфатические узлы, костный мозг;

3) изменение типа кроветворения и продуцируемых клеток – от мегалобластического к нормобластическому.

Общепринята клоновая теория кроветворения. Дифференцировка клеток крови осуществляется последовательно. Существует единая полипотентная стволовая клетка, способная дифференцироваться в направлении и миелопоэза, и лимфопоэза.

В процессе позднего фетогенеза происходит накопление стволовых клеток в костном мозге, их общее количество увеличивается очень значительно. Стволовые клетки плода имеют более высокий пролиферативный потенциал. Действует закон последовательной смены клонов стволовых кроветворных клеток в течение жизни человека. При преждевременных родах, родах с осложненным течением в условиях повышенной выработки цитокинов происходят увеличение концентрации и омоложение состава стволовых клеток пуповинной крови. Регуляция стволовых клеток осуществляется случайным сигналом. Кроветворение осуществляется путем смены клонов, образованных внутриутробно. Отдельные клетки стромы продуцируют ростковые факторы. Интенсивность формирования клеток зависит от действия гуморальных регуляторов: поэтинов, или ингибиторов. Лейкопоэтины – колониестимулирующие факторы. Ингибирование гранулоцитопоэза находится под влиянием лактоферина и простагландинов.

Этапы кроветворения в течение внутриутробного периода:

1) кроветворение в желточном мешке: к 19-му дню, по локализации – внеэмбрионально в структурах желточного мешка; к 6-й неделе диаметр желточного мешка составляет 5 мм. Развивающийся мезодермальный слой включает свободнолежащие мезенхимальные клетки, клетки крови и клетки сосудов. В плазме сосредоточены самые примитивные клетки крови, которые с этого момента начинают мигрировать.

Основной клеткой крови, происходящей на стадии желточного мешка, считается только эритроцит, но возможно возникновение на этой стадии и примитивных мегакариоцитов и клеток, похожих на гранулированные лейкоциты. К 10-й неделе беременности в желточном мешке очагов кроветворения нет;

2) кроветворение в печени и селезенке начинается с 6-й недели, максимально к 10-12-й неделе. Очаги кроветворения в печени находятся вне сосудов и в энтодерме и состоят из недифференцированных бластов. На 2-м месяце беременности в крови параллельно с мегалобластами и мегалоцитами обнаруживаются мегакариоциты, макрофаги, гранулоциты;

3) кроветворение в селезенке максимально к 3-му месяцу, к 5-му месяцу внутриутробного развития интенсивность его снижается. Лимфопоэз возникает на 2-м месяце. На 50-60-е сутки лимфоциты появляются в крови, вилочковой железе, селезенке, лимфатических узлах, миндалинах, пейеровых бляшках. Кровяные клетки моноцитарного ряда появляются на 18-20-й день гестации.

Костный мозг закладывается к концу 3-го месяца эмбрионального развития за счет мезенхимных периваскулярных элементов, проникающих из периоста в костномозговую полость. С 4-го месяца начинается костномозговое кроветворение. Костный мозг в пренатальном периоде – красный. У новорожденного масса костного мозга составляет 1,4 % от массы тела (40 г), у взрослого человека – 3000 г. В сроки 9-12 недель мегалобласты содержат примитивный гемоглобин, который заменяется фетальным. Последний становится основной формой в пренатальном периоде.

С 3-й недели гестации начинается синтез гемоглобина взрослого. Эритропоэз на ранних этапах характеризуется высоким пролиферативным потенциалом и независимостью от регулирующих влияний эритропоэтина. Насыщение организма плода железом происходит трансплацентарно. Дифференцировка гранулоцитов и макрофагов становится интенсивной только при становлении костномозгового кроветворения. В составе костного мозга над предшественниками эритропоэза постоянно и значительно преобладают миелоидные элементы. Абсолютное количество лейкоцитарного пула пуповинной крови составляет до 109/л, мононуклеарная фракция лейкоцитов в пуповинной крови составляет у доношеных приблизительно 44 %, а у недоношенных – 63 %, фракция гранулоцитов составляет у доношенных детей 44 %, у недоношенных – 37 %. Следующей ступенью дифференцировки в направлении миелопоэза является возникновение клетки – предшественницы миелоидного кроветворения, затем следуют бипотентные клетки, далее унипотентные. Завершают этапы морфологически различимые промежуточные и зрелые клетки всех рядов костномозгового кроветворения. После рождения в связи с установлением внешнего дыхания гипоксия сменяется гипероксией, выработка эритропоэтинов снижается, подавляется эритропоэз, более того, развивается гемодилюция благодаря быстрому увеличению массы тела. Количество гемоглобина и эритроцитов снижается.

3. Семиотика поражения системы крови и органов кроветворения

Синдром анемии. Под анемией понимают снижение количества гемоглобина (менее 110 г/л) или числа эритроцитов (менее 4 х 1012 г/л). В зависимости от степени снижения гемоглобина различают легкие (гемоглобин 90-110 г/л), среднетяжелые (гемоглобин 60–80 г/л), тяжелые (гемоглобин ниже 60 г/л) формы анемии. Клинически анемия проявляется различной степенью бледности кожи, слизистых оболочек. При постгеморрагических анемиях отмечаются:

1) жалобы больных на головокружение, шум в ушах;

2) систолический шум в проекции сердца;

3) шум «волчка» над сосудами.

У детей первого года жизни чаще отмечаются железодефицитные анемии, у детей школьного возраста – постгеморрагические, развивающиеся после выраженных или скрытых кровотечений – желудочно-кишечных, почечных, маточных.

Для определения регенераторной способности костного мозга определяют число ретикулоцитов. Их отсутствие в периферической крови указывает на гипопластическую анемию. Характерно и обнаружение пойкилоцитов – эритроцитов неправильной форм, анизоцитов – эритроцитов разной величины. Гемолитические анемии, врожденные или приобретенные, клинически сопровождаются повышением температуры тела, бледностью, желтухой, увеличением печени и селезенки. При приобретенных формах размеры эритроцитов не изменены, при гемолитической анемии Минковского-Шофара выявляется микросфероцитоз.

Синдром гемолиза наблюдается при эритроцитопатиях, в основе которых лежит снижение активности ферментов в эритроцитах. Гемолитическая болезнь новорожденных обусловлена антигенной несовместимостью эритроцитов плода и матери либо по резус-фактору, либо по системе АВО, причем первая форма протекает более тяжело. Эритроциты проникают в кровоток матери и вызывают выработку гемолизинов, которые по мере увеличения гестационного возраста трансплацентарно переходят к плоду и вызывают гемолиз эритроцитов, что при рождении проявляется анемией, тяжелой желтухой (вплоть до ядерной), увеличением печени и селезенки.

При особо тяжелых формах может произойти гибель плода.

Синдромы лейкоцитоза и лейкопении выражаются как в увеличении лейкоцитов (> 10 х 109/л – лейкоцитоз), так и в их снижении (< 5 х 109/л – лейкопения). Изменение числа лейкоцитов может происходить за счет нейтрофилов или лимфоцитов, реже за счет эозинофилов и моноцитов. Нейтрофильный лейкоцитоз наблюдается при сепсисе, гнойно-воспалительных заболеваниях, причем характерен и сдвиг лейкоцитарной формулы влево до палочкоядерных и юных форм, реже – миелоцитов. При лейкозах может наблюдаться особо высокий лейкоцитоз, характерной особенностью которого является наличие в периферической крови незрелых форменных элементов (лимфо– и миелобластов). При хроническом лейкозе лейкоцитоз особенно высок (несколько сотен тысяч), в формуле белой крови определяются все переходные формы лейкоцитов. Для острого лейкоза характерен в формуле крови hiatus leicemicus, когда в периферической крови присутствуют как особенно незрелые клетки, так и в небольшом числе зрелые (сегментоядерные нейтрофилы) без переходных форм.

Лимфоцитарный лейкоцитоз отмечается при бессимптомном инфекционном лимфоцитозе (иногда выше 100 х 109/л), коклюше (20 х 109/л), инфекционном мононуклеозе. Лимфоцитоз за счет незрелых клеток (лимфобластов) выявляется при лимфоидном лейкозе, относительный лимфоцитоз – при вирусных инфекциях (гриппе, ОРВИ, краснухе). Эозинофильные лейкемоидные реакции (нарастание эозинофилов в периферической крови) обнаруживаются при аллергических заболеваниях (бронхиальной астме, сывороточной болезни), глистной инвазии (аскаридозе), протозойных инфекциях (лямблиозе). При коревой краснухе, малярии, лейшманиозе, дифтерии, эпидемическом паротите выявляется относительный моноцитоз. Лейкопении развиваются чаще за счет снижения нейтрофилов – нейтропении, которая определяется у детей как снижение абсолютного количества лейкоцитов (нейтрофилов) на 30 % ниже возрастной нормы, они бывают врожденными и приобретенными, могут возникать после приема лекарственных средств, особенно цитостатиков – 6-меркаптопурина, циклофосфана, а также сульфаниламидов, в период выздоровления от брюшного тифа, при бруцеллезе, в период сыпи при коре и краснухе, при малярии. Лейкопении характеризуют и вирусные инфекции. Нейтропения в сочетании с тяжелой анемией отмечается при гипопластической анемии, относительная и абсолютная лимфопения – при иммунодефицитных состояниях.

Геморрагический синдром предполагает повышенную кровоточивость: кровотечения из слизистых оболочек носа, кровоизлияния в кожу и суставы, желудочно-кишечные кровотечения.

Типы кровоточивости

1. Гематомный тип характерный для гемофилии А, В (дефицит VIII, IX факторов). Клинически выявляются обширные кровоизлияния в подкожную клетчатку, под апоневрозы, в серозные оболочки, мышцы, суставы с развитием деформирующих артрозов, контрактур, патологических переломов, профузные посттравматические и спонтанные кровотечения. Развиваются через несколько часов после травмы (поздние кровотечения).

2. Петехиально-пятнистый, или микроциркуляторный, тип наблюдается при тромбоцитопениях, тромбоцитопатиях, при гипо– и дисфибриногенемии, дефиците X, V, II факторов. Клинически характеризуется петехиями, экхимозами на коже и слизистых оболочках, спонтанными или возникающими при малейшей травме кровотечениями: носовыми, десневыми, маточными, почечными. Гематомы образуются редко, нет изменений в опорно-двигательном аппарате, не наблюдается послеоперационных кровотечений, кроме после тонзиллэктомии. Опасны частые кровоизлияния в мозг, которым предшествуют петехиальные кровоизлияния.

3. Смешанный (микроциркуляторно-гематомный тип) отмечается при болезни Виллебранда и синдроме Виллибранда-Юргенса, так как дефицит коагуляционной активности плазменных факторов (VIII, IX, VIII + V, XIII) может сочетаться с дисфункцией тромбоцитов. Из приобретенных форм может быть вызван синдромом внутрисосудистого свертывания крови, передозировкой антикоагулянтов. Клинически характеризуется сочетанием двух обозначенных выше с преобладанием микроциркуляторного типа. Кровоизлияния в суставы происходят редко.

4. Васкулитно-пурпурный тип является результатом экссудативно-воспалительных изменений в микрососудах на фоне иммуноаллергических и инфекционно-токсических нарушений. Наиболее часто среди этой группы заболеваний встречается геморрагический васкулит (синдром Шенлейна-Геноха), при котором геморрагический синдром представлен симметрично расположенными (преимущественно на конечностях в области крупных суставов) элементами, четко отграниченными от здоровой кожи, выступающими над ее поверхностью, представленными папулами, волдырями, пузырьками, которые могут сопровождаться некрозом и образованием корочек. Возможно волнообразное течение, «цветение» элементов от багряного до желтого цвета с последующим мелким шелушением кожи. При васкулитно-пурпурном типе возможны абдоминальные кризы с обильным кровотечением, рвотой, макро– и микрогематурией.

5. Ангиоматозный тип характерен для различных форм телеангиоэктазий, наиболее часто – болезни Рандю-Ослера. Клинически нет спонтанных и посттравматических кровоизлияний, но имеются повторные кровотечения из участков ангиоматозно измененных сосудов – носовое, кишечное кровотечения, реже гематурия и легочное кровотечение.

Синдром увеличения лимфатических узлов

Лимфатические узлы могут увеличиваться при различных процессах.

1. Острое регионарное увеличение лимфатических узлов в виде местной реакции кожи над ними (гиперемия, отек), болезненности характерно для стафило– и стрептококковой инфекции (пиодермии, фурункула, ангины, отита, инфицированной раны, экземы, гингивита, стоматита). Если лимфатические узлы нагнаиваются, то температура повышается. Диффузное увеличение затылочных, заднешейных, тонзиллярных узлов отмечается при краснухе, скарлатине, инфекционном мононуклеозе, острых респираторно-вирусных заболеваниях.

У детей старшего возраста подчелюстные и лимфатические узлы особенно увеличены при лакунарной ангине, дифтерии зева.

2. При острых воспалениях лимфаденит имеет тенденцию к быстрому исчезновению, длительное время держится при хронических инфекциях (туберкулез чаще ограничивается шейной группой). Вовлеченные в туберкулезный процесс периферические лимфатические узлы плотные, безболезненные, имеют тенденцию к казеозному распаду и образованию свищей, после которых остаются неправильной формы рубцы. Узлы спаяны между собой, с кожей и подкожной клетчаткой. При диссеминированном туберкулезе и хронической туберкулезной интоксикации может наблюдаться генерализованное увеличение лимфатических узлов с развитием фиброзной ткани в пораженных лимфатических узлах. Диффузное увеличение малоболезненных лимфатических узлов до размера лесного ореха отмечается при бруцеллезе. Одновременно у этих больных отмечается увеличение селезенки. Из протозойных заболеваний лимфаденопатия наблюдается при токсоплазмозе (увеличении шейных лимфатических узлов). Генерализованное увеличение лимфатических узлов можно наблюдать при грибковых заболеваниях.

3. Лимфатические узлы увеличиваются также при некоторых вирусных инфекциях. Затылочные и заушные лимфатические узлы увеличиваются в продроме краснухи, позднее отмечается диффузное увеличение лимфатических узлов, при их пальпации отмечается эластическая консистенция, болезненность. Периферические лимфатические узлы могут быть умеренно увеличены при кори, гриппе, аденовирусной инфекции, они имеют плотную консистенцию и болезненны при пальпации. При инфекционном мононуклеозе (болезни Филатова) увеличение лимфатических узлов значительно в области шеи с обеих сторон, могут образовываться пакеты лимфатических узлов в других областях. Увеличение регионарных лимфатических узлов с явлениями периаденита (спаянность с кожей) обнаруживается при болезни «кошачьей царапины»), что сопровождается ознобом, умеренным лейкоцитозом, нагноение происходит редкое.

4. Лимфатические узлы могут увеличиваться при инфекционно-аллергических заболеваниях. Аллергический субсепсис Висслера-Фанкони проявляется диффузной микрополиаденией.

В месте введения сывороточного чужеродного белка может возникнуть регионарное увеличение лимфатических узлов, возможна и диффузная лимфаденопатия.

5. Значительное увеличение лимфатических узлов наблюдается при заболеваниях крови. Как правило, при острых лейкозах отмечается диффузное увеличение лимфатических узлов. Оно проявляется рано и больше всего выражено в области шеи. Его размеры не превышают размеры лесного ореха, но при опухолевых формах могут быть значительными (увеличиваются лимфатические узлы шеи, средостенья, других областей, они образуют большие пакеты). Хронический лейкоз – миелоз – у детей встречается редко, увеличение лимфатических узлов выражено нерезко.

6. При опухолевом процессе лимфатические узлы увеличиваются часто, они могут становиться центром первичных опухолей или метастазов в них. При лимфосаркоме увеличенные лимфатические узлы прощупываются в виде больших или малых опухолевых масс, которые затем прорастают в окружающие ткани, теряют подвижность, могут сдавливать окружающие ткани (происходят отек, тромбоз, паралич). Увеличение периферических лимфатических узлов является основным симптомом при лимфогранулематозе: увеличиваются шейные и подключичные лимфатические узлы, которые представляют собой конгломерат, пакет с нечетко определяемыми узлами. Они вначале подвижны, не спаяны между собой и окружающими тканями. Позднее они могут быть связанными между собой и подлежащими тканями, становятся плотными, иногда умеренно болезненными. В пунктате обнаруживаются клетки Березовского-Штернберга. Увеличенные лимфатические узлы могут быть обнаружены при множественной миеломе, ретикулосаркоме.

7. Ретикулогистиоцитоз «Х» сопровождается увеличением периферических лимфатических узлов. Детский «лимфатизм» – проявление особенности конституции – сугубо физиологическое, абсолютно симметричное увеличение лимфатических узлов, сопутствующее росту ребенка. В возрасте 6-10 лет общая лимфоидная масса детского организма может вдвое превышать лимфоидную массу взрослого человека, в дальнейшем происходит ее инволюция. К числу проявлений пограничного состояния здоровья можно отнести гиперплазию вилочковой железы или периферических лимфатических желез. Значительная гиперплазия вилочковой железы требует исключения опухолевого процесса, иммунодефицитных состояний. Значительная гиперплазия вилочковой железы может развиться у детей с заметно ускоренным физическим развитием, перекормом белком. Такой «акселерационный» лимфатизм отмечается у детей конца первого, второго года, редко в 3–5 лет.

Аномалией конституции следует считать лимфатико-гипопластический диатез, при котором увеличение вилочковой железы и в небольшой степени гиперплазия периферических лимфатических узлов сочетаются с небольшими показателями длины и массы тела при рождении и последующим отставанием скорости роста и прибавок веса тела. Такое состояние является последствием внутриутробной инфекции или гипотрофии, нейрогормональной дисфункции. В случаях, когда такая дисфункция приводит к снижению резервов или глюкокортикоидной функции надпочечников, ребенок может иметь гиперплазию вилочковой железы.

Оба вида лимфатизма – и макросоматический, и гипопластический – имеют повышенный риск злокачественного течения интеркуррентных, чаще респираторных инфекций. На фоне гиперплазии вилочковой железы имеется риск скоропостижной смерти.

Синдром лимфатизма, напоминающий по клинике детский лимфатизм, но с большей степенью гиперплазии лимфатических образований и с нарушениями общего состояния (такими как плач, беспокойство, неустойчивость температуры тела, насморк), развивается при респираторной или пищевой сенсибилизации.

В последнем случае за счет увеличения мезентериальных узлов возникает картина регулярной колики со вздутием живота, затем увеличиваются миндалины и аденоиды.

Диагноз конституционального лимфатизма требует обязательного исключения других причин лимфоидной гиперплазии.

Синдром недостаточности костномозгового кроветворения, или миелофтиз, может развиться остро при поражении проникающей радиацией, индивидуальной высокой чувствительности к антибиотикам, сульфаниламидам, цитостатикам, противовоспалительным или обезболивающим средствам. Возможно поражение всех ростков костномозгового кроветворения. Клинические проявления: высокая лихорадка, интоксикация, геморрагические сыпи или кровотечения, некротическое воспаление и язвенные процессы на слизистых оболочках, локальные или генерализованные проявления инфекции или грибковых заболеваний. В периферической крови наблюдается панцитопения при отсутствии признаков регенерации крови, в пунктате костного мозга – обеднение клеточными формами всех ростков, картина клеточного распада. Чаще недостаточность кроветворения у детей протекает как медленно прогрессирующее заболевание.

Конституциональная апластическая анемия (или анемия Фанкони) чаще выявляется после 2–3 лет, дебютирует моноцитопенией, анемией или лейкопенией, тромбоцитопенией. Клинически проявляется общей слабостью, бледностью, одышкой, болями в сердце, упорными по течению инфекциями, поражениями слизистой оболочки полости рта, повышенной кровоточивостью. Костномозговой недостаточности сопутствуют множественные скелетные аномалии, особенно типично аплазия радиуса на одном из предплечий. Размеры циркулирующих эритроцитов увеличены. Приобретенная недостаточность кроветворения наблюдается при недостаточности питания, при большой скорости потерь клеток крови или их разрушении. Низкая эффективность эритропоэза может возникать при недостаточности стимуляторов эритропоэза (гипоплазии почек, хронической почечной недостаточности, недостаточности щитовидной железы.

Алиментарно-дефицитные, или нутритивные, анемии развиваются при белково-энергетической недостаточности, при несбалансированности обеспечения детей раннего возраста комплексом необходимых нутриенов, особенно железом. При преждевременных родах у детей отсутствуют необходимые новорожденному депо жировых энергетических веществ, в частности Fe, Cu, витамина В12. Гемоглобинопатии у детей в Африке, Азии, Среднего Востока обусловлены носительством и генетической наследуемостью аномальных структур гемоглобина (серповидно-клеточной анемией, талассемией). Общие проявления гемоглобинопатий – хроническая анемия, сплено– и гепатомегалия, гемолитические кризы, полиорганные повреждения в результате гемосидероза. Острые лейкозы – самая частая форма злокачественных новообразований у детей, они возникают в основном из лимфоидной ткани, чаще в возрасте 2–4 лет.

Клинически выявляются признаки вытеснения нормального гемопоэза с анемией, тромбоцитопенией, геморрагическими проявлениями, увеличение печени, селезенки, лимфатических узлов.

Ключевым моментом в диагностике является констатация разрастания анаплазированных гемопоэтических клеток в миелограмме или костных биоптатах.

Роль желточного мешка. Через некоторое время после оплодотворения яйца (2- 3 нед) возникает эмбриональное кроветворение (рис. 1-2). Первые этапы этого процесса происходят в желточном мешке, где найдены недифференцированные клетки, называемые мезобластами, которые мигрируют в него из первичной по­лоски эмбриона.

Мезобласты имеют высокую митотическую активность и впос­ледствии дифференцируются в клетки, называемые первичными эритробластами, несомненно родственные зрелым кровяным клеткам взрослого человека, а также первичным эндотелиальным клеткам, образующим сосудистую систему желточ­ного мешка. В течение нескольких часов после миграции происходит деление и дифференцировка мезобластов желточного мешка до первичных эритроцитов. Большинство этих клеток ядросодержащие, некоторые же не имеют ядер. Но все они синтезируют гемоглобин, что обусловливает красноватый цвет хорошо раз­личимых кровяных островков желточного мешка.

В кровяных островках найдены также предшественники тромбоцитов, мегака- риоциты, которые тоже происходят от мезобластов. Другие мезобласты, видимо, дифференцируются в клетки, называемые гемоцитобластами.

У эмбрионов некоторых млекопитающих описана вторая стадия гемопоэза в желточном мешке. Она существует и у человеческих эмбрионов, но протекает не так энергично, как, например, у кролика, эмбриогенез клеток крови которого наиболее изучен. На второй стадии гемопоэза в желточном мешке гемоцитобла- сты дифференцируются в окончательные эритробласты, которые впоследствии синтезируют гемоглобин и становятся окончательными, или вторичными, нор- мобластами. Последние могут терять свои ядра и становиться окончательными эритроцитами. В кровяных островках формируются сосудистые каналы, объеди­няющиеся в конечном счете в сеть кровеносных сосудов. Эта сеть примитивных кровеносных сосудов на ранних этапах содержит первичные эритробласты и ге- моцитобласты, а на более поздних - зрелые эритробласты и эритроциты. К кон­цу третьей недели эмбрионального развития кролика гемопоэтическая актив­ность кровяных островков падает и процесс гемопоэза перемещается в печень.

"6 12 18 24 36 36 42 48
6 12 18 24 30 36
Рис. 1-2. (А) Кластеры гена глобина на хромосомах 16 и И. У эмбриона, плода и взрослого человека активируются или подавляются разные гены. Различные цепи глобина синтезируются независимо, а затем объединяются друг с другом, что приводит к образованию нескольких типов гемоглобина. Ген у может иметь две последовательности, что приводит к синтезу цепей, отличающихся наличием остатка глутаминовой кислоты или аланина в позиции 136 (Су или Ау соответственно). (Цит. по: НоЙЪгап^ А. V., Реик]. Е. Е55епИа1 Нета1о1о^у, Згс1 ес1. СатЬпс1§е, Мазз.: В1аск\уе11 ЗаепИГю РиБИзЬт^; 1993.) (Б) Со­отношение стадии развития, локализации гемопоэза и синтеза гемоглобина. Петли соединяют цеии, которые связываются в норме и при патологии. (По: Вго\уп М. 5. РеЫ апс! КеопаЫ Егу1Ьгоро1е515 т Веуе1ортепЫ апс1 КеопаЫ НетаЫо^у. №\у Уогк: Яауеп Ргезз; 1988. Из: НапсИп Я. I., 8Ю55е1 Т. Р, Ьих 5. Е. (ес!5.) В1оос1: Рппар1е5 апс! РгасЫсе оШеша1о1о^у. РЫЫе1рЫа: X В. Урртсои, 1995.)

Эмбриональная мезенхима. Дополнительную роль в раннем эмбриональном ге- мопоэзе непосредственно в полости тела играют первичные мезенхимные клетки, особенно в районе передней прекардиальной мезенхимы. Малая часть мезенхим­ных клеток развивается в эритробласты, мегакадшоциты, гранулоциты и фагоци­тирующие клетки, аналогичные соответствующем клеткам взрослых. Количество этих клеток невелико, и больших разрастаний клеток крови, подобных кроветвор­ным островкам желточного мешка, в мезенхиме полости тела не формируется. Стволовые клетки, располагающиеся среди этих гемопоэтических клеток (вне желточного мешка), вероятно, играют главную роль в генерации последующих поколений гемопоэтических клеток у плода и в постнатальном периоде, хотя от­носительный вклад первичных стволовых клеток, находящихся в желточном мешке и вне его, в более поздний гемопоэз пока не ясен.

Печеночный период эмбрионального гемопоэза. У человека, начиная примерно со стадии 12 мм эмбриона (возраст 6 нед), гемопоэз постепенно перемещается

в печень (рис.

1-2). Печень скоро становится основным местом гемопоэза и явля­ется активной в этом отношении до момента рождения. Поскольку энтодермаль- ные тяжи печени формируются в поперечные перегородки, они сталкиваются с блуждающими мезенхимными клетками с морфологией лимфоцитов. Эти ма­ленькие круглые лимфоидные клетки, называемые лимфоцитоидными блуждаю- щими клетками, впоследствии улавливаются между первичными печеночными энтодермальными тяжами и эндотелиальными клетками врастающих капилля­ров. Они образуют гемоцитобласты, подобные таковым в желточном мешке. Эти гемоцитобласты вскоре формируют очаги гемопоэза, аналогичные кровяным ост­ровкам желточного мешка, где вторичные эритробласты образуются в больших количествах. Вторичные эритробласты впоследствии делятся и дифференциру­ются в зрелые эритроциты, при этом происходят активация синтеза гемоглобина и потеря клеточного ядра. Хотя зрелые эритроциты обнаруживаются в печени эм­бриона уже в возрасте 6 нед, в значимом количестве они появляются в циркуля­ции гораздо позднее. Таким образом, к четвертому месяцу жизни плода большин­ство циркулирующих эритроцитов представлено вторичными зрелыми формами. Мегакариоциты также, вероятно, образуются из гемоцитобластов в печени эмб­риона и плода. В эмбриональной печени находят гранулоцитарные клетки, но раз­виваются они, видимо, не из гемоцитобластов, а непосредственно из блуждающих лимфоцитоидных клеток.

Эмбриональный костный мозг и миелопоэз. Различные кости у эмбриона образу­ются не одновременно. Раньше других - длинные кости добавочного скелета. Первоначально формируется хрящевая модель каждой кости. Центральное ядро диафиза впоследствии оссифицируется, и вскоре вслед за врастанием мезенхимных клеток из периоста развивается область костной резорбции. Процесс движения мезенхимных клеток сопровождается врастанием внутрь капилляров. Количество мезенхимных клеток продолжает увеличиваться за счет непрерывного притока новых клеток, а также делением тех, которые уже находятся внутри недавно сфор­мировавшейся костномозговой полости. Они нарабатывают неклеточный матери­ал, или матрикс, заполняющий развивающуюся полость кости. Из этих ранних ко­стномозговых мезенхимных клеток образуются клетки, морфологически сходные с гемоцитобластами печени и желточного мешка. Аналогично последним, они дают начало мегакариоцитам и эритроидным клеткам, а также миелоидным, вклю­чая нейтрофилы, базофилы и эозинофилы. Эмбриональный костный мозг заметно отличается от центров более раннего развития гемопоэза тем, что образование ми- елоидных клеток идет здесь особенно энергично и доминирует в гемопоэзе. Про­цесс формирования ранних миелоидных клеток, или миелопоэз, начинается в цен­тральной части костномозговой полости и распространяется оттуда, чтобы в конечном счете захватить всю полость кости. Эритропоэз в эмбриональном кост­ном мозге развивается немного позже й в основном смешивается с процессом миелопоэза, так что среди большинства созревающих клеток миелоидной линии можно наблюдать малые очаги эритропоэза. После рождения у человека гемопоэз в печени прекращается, но продолжается в костном мозге всю оставшуюся жизнь.

Гемопоэз в селезенке эмбриона и плода. Последним важнейшим очагом гемопоэ­за, который образуется в эмбриональном периоде, является селезенка. Хотя сама селезенка формируется у человека! намного раньше, циркулирующие гемопоэти­ческие предшественники начинают заполнять ее примерно на четвертом месяце

беременности. Вероятно в результате скопления большого объема крови селезен­ка плода становится центром гемопоэза до момента рождения, когда селезеночный эритропоэз постепенно прекращается. В целом миелопоэтическая активность се­лезенки эмбриона и плода сравнительно невелика. Позднее, в течение пятого ме­сяца эмбрионального развития, формируется белая пульпа селезенки. Этот про­цесс связан с дифференцировкой мезенхимных клеток, которые группируются вокруг селезеночных артериол. Образование селезеночных лимфоцитов у эмбрио­на полностью пространственно отделено от центров эритропоэза в этом органе.

Другие места гемопоэза у эмбриона и плода. Эмбриональный тимус развивается как производное третьего жаберного кармана. Тимический эпителий заполняется блуждающими мезенхимными клетками, которые начинают быстро размножаться и дифференцироваться в лимфоциты. Одновременно в тимусе формируется незна­чительное количество эритроидных и миелоидных клеток, но преобладает процесс лимфопоэза. Лимфоциты, образующиеся в этом органе, представляют собой осо­бый класс лимфоцитов со специальной функцией - участие в клеточном иммуни­тете. Лимфатические узлы развиваются как разрастания примитивных лимфати­ческих сосудов, которые вскоре окружаются большим количеством мезенхимных клеток. Впоследствии эти клетки округляются и становятся похожими по виду на лимфоциты взрослого. Некоторые из мезенхимных клеток дают начало клеткам других линий, таких как эритроциты, гранулоциты, мегакариоциты, но это явление преходящее, поскольку основным процессом в тимусе является лимфопоэз.

Заключение. Во всех гемопоэтических органах эмбриона и плода происходят тождественные процессы (рис. 1-2). Циркулирующие первичные гемопоэтичес­кие стволовые клетки расселяются в специфической тканевой нише способом, который до конца еще не понят. Там они дифференцируются в клетки, распозна­ваемые как гемопоэтические предшественники. Эти эмбриональные гемопоэти­ческие предшественники, вероятно, способны к мультилинейной дифференци- ровке, но в каждом конкретном месте процесс гемопоэза может быть нацелен на формирование определенной линии клеток, возможно, под влиянием локаль­ного микроокружения. Различные очаги эмбрионального гемопоэза активны только на соответствующих этапах развития. За этой активацией следует про­граммируемая инволюция. Исключение составляет костный мозг, который сохра­няется как основной центр гемопоэза у взрослых. Лимфатические узлы, селезенка, тимус и другие лимфоидные ткани продолжают выполнять лимфопоэтическую функцию и у взрослого человека.

К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ

IV курс специальность «Педиатрия»

Дисциплина: «Пропедевтика детских болезней с курсами здорового ребенка и общим уходом за детьми»

АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

ОРГАНОВ КРОВЕТВОРЕНИЯ У ДЕТЕЙ И ПОДРОСТКОВ.

Продолжительность занятия__ _часа

Вид занятия – практическое занятие.

ЦЕЛЬ ЗАНЯТИЯ: Изучить анатомо-физиологические особенности системы кроветворения у детей.

ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:

1. Этапы эмбрионального гемопоэза и их роль в понимании возникновения очагов экстрамедуллярного кроветворения при патологии кроветворных органов у детей и подростков.

2. Полипотентная стволовая клетка и этапы ее дифференцировки.

3. Закономерности изменения лейкоцитарной формулы с возрастом детей.

4. Эритроцитарный росток и его изменения в постнатальном периоде.

5. Гранулоцираная система кроветворения.

6. Лимфоидная система кроветворения.

7. Система гемостаза у детей и подростков

Вопросы для самостоятельного изучения студентами.

1. Современная схема кроветворения.

  1. Осмотр больного, оценка данных исследования периферической крови у больного с нормой.

ОСНАЩЕНИЕ ЗАНЯТИЯ: таблицы, схемы, истории болезни.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ.

Кровь – одна из наиболее лабильных жидкостных систем организма, постоянно вступающая в контакт с органами и тканями, обеспечивающая их кислородом и питательными веществами, отводящая к органам выделения отработанные продукты обмена, участвующая в регуляторных процессах поддержания гомеостаза.

В систему крови включаются органы кроветворения и кроверазрушения (красный костный мозг, печень, селезенка, лимфатические узлы, другие лимфоидные образования) и периферическая кровь, нейрогуморальные и физико-химические регуляторные факторы.

Составными частями крови являются форменные элементы (эритроциты, лейкоциты, тромбоциты) и жидкая часть – плазма.

Общее количество крови в организме взрослого человека составляет 7% массы тела и равно 5 л, или 70 мл на 1 кг массы тела. Количество крови у новорожденного составляет 14% массы тела или 93-147 мл на 1 кг массы тела, у детей первых трех лет жизни – 8%, 4-7 лет – 7-8%, 12-14 лет 7-9% массы тела.

Эмбриональное кроветворение.

Кроветворение во внутриутробном периоде развития начинается рано. По мере роста эмбриона и плода последовательно меняется локализация гемопоэза в различных органах.

Табл. 1. Развитие гемопоэтической системы человека (по Н.С. Кисляк, Р.В. Ленской, 1978).

Начинается кроветворение в желточном мешке на 3-й неделе развития человеческого эмбриона. В начале оно сводится в основном к эритропоэзу. Образование первичных эритробластов (мегалобласты) происходит внутри сосудов желточного мешка.

На 4-й неделе кроветворение появляется в органах эмбриона. Из желточного мешка гемопоэз перемещается в печень, которая к 5-й недели гестации становится центром кроветворения. С этого времени наряду с эритроидными клетками начинают образовываться первые гранулоциты и мегакариоциты, при этом мегалобластический тип кроветворения сменяется на нормобластический. К 18-20-й неделе развития человеческого плода кроветворная активность в печени резко снижена, а к концу внутриутробной жизни, как правило, совсем прекращается.

В селезенке кроветворение начинается с 12-й недели, образуются эритроциты, гранулоциты, мегакариоциты. С 20-й недели миелопоэз в селезенке сменяется интенсивным лимфопоэзом.

Первые лимфоидные элементы появляются на 9-10 неделе в строме тимуса, в процессе их дифференцировки образуются иммунокомпетентные клетки – Т-лимфоциты. К 20-й неделе тимус по соотношению малых и средних лимфоцитов сходен с тимусом доношенного ребенка, к этому времени в сыворотке крови плода начинают обнаруживаться иммуноглобулины М и G.

Костный мозг закладывается в конце 3-го месяца эмбрионального развития за счет мезенхимальных периваскулярных элементов, проникающих вместе с кровеносными сосудами из периоста в костномозговую полость. Гемопоэтические очаги в костном мозге появляются с 13-14 недели внутриутробного развития в диафизах бедренных и плечевых костей. К 15-й неделе в этих локусах отмечается обилие юных форм грануло-, эритро- и мегакариоцитов. Костномозговое кроветворение становится основным к концу внутриутробного развития и на протяжении всего постнатального периода. Костный мозг в пренатальном периоде красный. Его объем с возрастом плода увеличивается в 2,5 раза и к рождению составляет порядка 40 мл. и он присутствует во всех костях. К концу гестации начинают появляться в костном мозге конечностей жировые клетки. После рождения в процессе роста ребенка масса костного мозга увеличивается и к 20 годам составляет в среднем 3000 г, но на долю красного костного мозга будет приходиться порядка 1200 г, и он будет локализоваться в основном в плоских костях и телах позвонков, остальная часть будет замещена желтым костным мозгом.

Основным отличие состава форменных элементов крови плода является постоянное нарастание числа эритроцитов, содержания гемоглобина, количества лейкоцитов. Если в первой половине внутриутробного развития (до 6 месяцев) в крови обнаруживаются много незрелых элементов (эритробластов, миелобластов, промиелоцитов и миелоцитов), то в последующие месяцы в периферической крови плода содержатся преимущественно зрелые элементы.

Изменяется и состав гемоглобина. Вначале (9-12 нед) в мегалобластах находится примитивный гемоглобин (HbP), который заменятся фетальным (HbF). Он становится основной формой в пренатальном периоде. Хотя с 10-й недели начинают появляться эритроциты с гемоглобином взрослого типа (HbA), доля его до 30 недели составляет лишь 10%. К рождению ребенка фетальный гемоглобин составляет приблизительно 60%, а взрослый – 40% всего гемоглобина эритроцитов периферической крови. Важным физиологическим свойством примитивного и фетального гемоглобинов является их более высокое сродство к кислороду, что имеет важное значение во внутриутробном периоде для обеспечения организма плода кислородом, когда оксигенация крови плода в плаценте относительно ограничена по сравнению с оксигенацией крови после рождения в связи с установлением легочного дыхания.


Похожая информация.


Впервые очаги кроветворения возникают в конце второй начале третьей недели эмбриогенеза в стенке желточного мешка и других внезародышевых органах (хорионе, пупочном канатике).

В мезенхиме внезародышевых органов происходит образование кровяных островков, которые отличаются в начале своего развития только более плотным расположением клеточных элементов. Затем периферически расположенные клетки кровяного островка вытягиваются и превращаются в эндотелий первых кровеносных сосудов. Клетки, лежащие в центре кровяных островков, теряют связи, округляются и превращаются в первичные клетки крови, между которыми накапливается жидкость - плазма. Первичные клетки крови представляют собой стволовые клетки крови. Большинство стволовых клеток разносится с током крови по организму, а часть - остается в стенке желточного мешка. Эти клетки пролиферируют и дифференцируются в первичные эритробласты- мегалобласты. Мегалобласты отличаются крупными размерами и наличием крупного, круглого, компактного ядра. В результате активной пролиферации число мегалобластов существенно возрастает. В результате сморщивания ядра мегалобласты постепенно превращаются в первичные эритроциты (мегалоциты), которые характеризуются наличием остатков ядра и большими размерами. Кроме того, уже на стадии первичных мегалобластов в клетке начинает синтезироваться особый тип гемоглобина: первичный гемоглобин или примитивный гемоглобин или HbР. Этот тип гемоглобина свойственен только для желточного кроветворения. Он содержится в первичных эритроцитах до 12-ой недели. В желточном мешке кроветворение происходит в внутри сосудов и называется интраваскулярным кроветворением . В сосудах желточного мешка уже начинается образование и вторичных эритроцитов. Желточный мешок функционирует как кроветворный орган в период с конца второй недели до 5 недели эмбриогенеза включительно.

После атрофии желточного мешка на 5 недели центром кроветворения становится печень . Здесь возникают эритроциты, гранулоциты и тромбоциты. Сначала в печени образуются только первичные эритроциты, но постепенно начинают образовываться вторичные эритроциты, для которых характерно содержание уже другой разновидности гемоглобина- фетального или HbF, обладающего большей способностью связывать кислород, чем другие виды гемоглобина. С 6 недели первичные эритроциты заменяются вторичными. У новорожденного ребенка на долю HbF приходится уже только около 20%, а около 80% приходится на долю HbA, то есть гемоглобин взрослого человека. У 6 месячного ребенка этого гемоглобина становится еще меньще (около 1%), а остальное приходится на долю HbA. Именно поэтому при прочих равных условий ребенок, родившийся в 36 недель (8 месяцев), выживает существенно реже, чем ребенок, родившийся в 32 недели (7 месяцев).

Иначе говоря, по мере роста и развития плода способность его крови связывать кислород снижается. Таким образом, на ранних стадиях развития плод обладает способностью связывать кислород в достаточном количестве при наличии относительно низкого его парциального давления в крови. Эти закономерности имеют очень большое физиологическое значение: в ранние сроки беременности, когда плод особенно чувствителен к повреждающему действию гипоксии, фетальный гемоглобин обеспечивает наиболее полную утилизацию кислорода из материнской крови. В этом состоит важнейший механизм защиты плода от кислородного голодания, в том числе по причине плацентарной недостаточности.

На первом и втором месяце внутриутробного развития в периферической крови безъядерных эритроцитов почти нет. Начиная с 9 недели внутриутробного развития, в периферической крови плода появляется много незрелых клеток белой крови. Однако, на ранних стадиях эмбриогенеза в периферической крови преобладают эритроциты. К 5-ому месяцу утробной жизни выработка первичных эритроцитов прекращается, а формируются только безъядерные вторичные эритроциты. На 5 месяце появляются лимфоциты и удваивается содержание гранулоцитов. Моноцитов в эмбриональной крови практически нет. Однако обнаруживаются уже В-лимфоциты.

На смену желточному мешку приходит другой кроветворный орган - печень, которая функционирует как кроветворный орган с 5 недели и в основном продолжается до 5 месяца. Однако, частично печеночное кроветворение может сохраняться до периода новорожденности.

Установлено, что у эмбриона основная масса стволовых клеток крови локализуется в печени, поэтому в ряде крупных клиник успешно применяется пересадка аллогенной эмбриональной печени для коррекции иммунодефицитных состояний.

Печеночное кроветворение называется экстраваскулярным, так как деление клеток крови происходит в тканях, окружающих кровеносные сосуды.

На 4-ом месяце утробной жизни начинается кроветворение в селезенке. Наибольшей интенсивности процессы кроветворения здесь достигают на 5-ом месяце. В первой половине эмбрионального развития селезенка является универсальным кроветворным органом. Развитие очагов кроветворения в селезенке наблюдается позднее (на 5-7 месяце) и к концу утробного периода в селезенке развиваются только незернистые лейкоциты.

С 3-го месяца утробной жизни наблюдается образование незернистых лейкоцитов в закладках лимфатических узлов в области шейных лимфатических мешков. С 10-ой недели начинается кроветворение в тимусе сразу в лимфоидных направлениях.

В конце 3 месяца органом кроветворения становится костный мозг, который по мере угасания процессов кроветворения в печени и селезенке становится центром образования гранулоцитов и эритроцитов. Первые очаги возникают на 13-14 неделе в диафизах трубчатых костей. Несмотря на то, что к концу утробного развития формируются и начинают функционировать все кроветворные органы, периферическая кровь 8, 9 и 10 месячных плодов еще отличается от крови новорожденного ребенка. Поэтому у недоношенных детей кровь содержит меньше эритроцитов и лейкоцитов. Молодые формы лейкоцитов встречаются чаще. Содержание гемоглобина ниже. Таким образом, у недоношенных детей наряду с недостаточным развитием ряда физиологических функций крови, еще недостаточно развита и ее защитная функция.