К клеточным факторам неспецифической резистентности относится. Механизмы неспецифической резистентности

Гуморальные неспецифические факторы защиты представлены раз-личными белками и пептидами, содержащимися в крови и жидкостях ор-ганизма. Они сами могут обладать антимикробными свойствами или спо-собны активизировать другие гуморальные и клеточные механизмы имму-нитета.

1.1.1. Лизоцим (мурамидаза) – является лизосомальным ферментом, активность которого проявляется в гидролизе –1–4-гликозидной связи полиаминосахаров клеточной стенки преимущественно грамположитель-ных бактерий. Антимикробное действие лизоцима связано с его способно-стью расщеплять гликозидные связи в молекуле N-муреина (полимер – L-ацетил-мурамовой кислоты и N-ацетилглюкозамина), входящего в состав клеточной стенки грамположительных и грамотрицательных микроорга-низмов. В комбинации с комплементом и некоторыми химическими и фи-зическими факторами лизоцим может лизировать и клетки грамотрица-тельных микроорганизмов. Взаимодействуя с секреторными иммуногло-булинами, лизоцим участвует в формировании местного иммунитета.

1.1.2. Комплемент – система сывороточных белков состоит из более 20 компонентов глобулиновой природы и рассматривается как комплекс проэнзимов, требующих последовательной активации, начиная с первого (классический путь активации), третьего и пятого компонентов (альтерна-тивный путь активации) комплемента. Активированный комплемент, взаи-модействуя с комплексом антиген-антитело, лизирует последний. Кроме цитолиза, комплемент принимает участие в анафилаксии, иммунном при-липании, конглютинации, фагоцитозе, распознавании лимфоцитами анти-генов.

Активация фагоцитоза комплементом осуществляется в результате участия его компонентов С3 и С5 в хемотаксисе и С3 в аттракции (иммун-ном прилипании). Рецепторы для С3 фрагментов имеются также на В-лимфоцитах, которые являются полноценными предшественниками анти-телопродуцирующих клеток при первичном и вторичном иммунном ответе на тимусзависимые и тимуснезависимые антигены.

1.1.3. Пропердин – эуглобулин сыворотки крови, мигрирующий между - и -глобулинами. Он запускает альтернативный путь активации комплемента при помощи сложной системы, включающей 6 факторов. Ак-тиваторами включения альтернативного пути являются иммуноглобулины класса А, эндотоксин, зимозан и другие полисахариды.

Вместе с комплементом пропердин принимает участие в разрушении преимущественно грамотрицательных бактерий, измененных эритроцитов, нейтрализации и инактивации некоторых вирусов.

1.1.4. С-реактивный белок (СРБ) является индуцибельным фактором и относится к группе так называемых острофазных белков плазмы. Свое название он получил за способность связываться с С-полисахаридом кле-точной стенки пневмококка. Представляет собой пентамер кольцевидной формы, состоящий из одинаковых субединиц с молекулярной массой 21000 D. Каждая субъединица СРБ имеет активные центры, связывающие фосфорилхолин, поликатионы, полианионы и галактаны. Фосфорилхолин входит в состав клеточных стенок бактерий и фосфолипидов клеточных мембран. Связанный с мишенью СРБ способен активировать систему ком-племента классическим и альтернативным путем. Комплексы, содержащие СРБ, растворяются комплементом так же, как комплексы антиген-антитело. СРБ является хорошим опсонином и стимулятором подвижности фагоци-тов. Основное место синтеза СРБ – печень, другим местом выработки СРБ являются лимфоидные клетки.

1.1.5. Интерферон (ИФН) – является низкомолекулярным белком, синтезируемым в клетках in vitro и in vivo при действии на них различных чужеродных факторов: вирусов, бактерий, нуклеиновых кислот, синтети-ческих полимеров и т.д. Интерферон определяется как белковый фактор, который не обладает вирусспецифичностью, а активность его в отношении вирусов, по крайней мере в гомологичных клетках, осуществляется с уча-стием клеточного метаболизма, вовлекающего синтез РНК и белка.

В зависимости от места образования и структуры выделяют три типа ИНФ: , , . ИФН- образуется преимущественно В-лимфоцитами и др. (лейкоцитарный, I тип), ИФН- - эпителиальными клетками и фибробла-стами (фибробластный, I тип), -ИФН – иммунными лимфоцитами с уча-стием макрофагов (иммунный, II тип). Антигенные различия ИФН обу-словлены не характером воздействующего индуктора, а именно природой клеток-продуцентов. ИФН делятся не только на 3 вида, но и каждый из них состоит из нескольких отличных друг от друга фракций белков. Согласно международной классификации -ИФН состоит из 12 подвидов. Описано 4 подвида -ИФН и 3 подвида -ИФН.

Продукция ИФН в организме осуществляется в основном лейкоцита-ми, Т- и В-лимфоцитами, макрофагами, клетками РЭС, эпителиальными клетками слизистых оболочек. Образование ИФН при вирусных инфекци-ях происходит очень быстро, с первых часов заболевания, совпадает по времени с репродукцией вируса и намного опережает появление специфи-ческих иммуноглобулинов, даже IgM. Интерфероны являются частью лимфокинового комплекса и сами, по своей природе – лимфокины. Им-мунный ИФН также как лимфокин образуется Т-лимфоцитами в ответ на антигенную стимуляцию.

1.1.6. Интегральным показателем состояния гуморального звена не-специфической резистентности является бактерицидная активность сы-воротки крови. Она опосредована простыми белками (лактоферрин, трансферрин, интерферон, интерлейкин-1,-6,-8, фактор некроза опухоли, фактор активации тромбоцитов, лизоцим, фибронектины), сложными бел-ками (комплемент, фибринопептиды), белками острой фазы воспаления (гаптоглубин, фибриноген, С-реактивный белок и др.).

В сыворотке крови инициатором бактерицидных реакций являются иммуноглобулины М-класса, как наиболее комплементзависимые, в секре-тах слизистых – иммуноглобулины А-класса, как наиболее лизоцимзави-симые.

По отношению к грамотрицательным микроорганизмам бактерицид-ная активность сыворотки крови представляет собой результат синергид-ного действия поэтапно включающихся в этот процесс факторов: в начале – иммуно-глобулинов и комплемента, затем – лизинов и лизоцима. Лизис грамотрицательных бактерий осуществляется в основном за счет компле-мента, вызывающего деструкцию краевых слоев оболочки, и усиливается лизоцимом.

По отношению к грамположительным бактериям лизоцим выступает в качестве основного литического фактора, -лизин – вспомогательного. Микробы, покрытые оболочкой с обедненным ригидным слоем, могут, ви-димо, лизироваться одним комплементом. Не лизированные, но повре-жденные бактерии, легче поддаются фагоцитозу, особенно после адсорб-ции на их поверхности иммуноглобулинов и комплемента.

К гуморальным факторам относят: комплемент, интерфероны, лизоцим, бета-лизины и клеточные факторы: нейтрофильные лейкоциты (микрофаги).

Основным гуморальным фактором неспецифической резистентности является комплемент - сложный комплекс белков сыворотки крови (около 20), которые участвуют в уничтожении чужеродных антигенов, активации свертывания, образовании кининов. Для комплемента характерно формирование быстрого, многократно усиливающегося ответа на первичный сигнал за счет каскадного процесса. Активироваться комплемент может двумя путями: классическим и альтернативным. В первом случае активация происходит за счет присоединения к иммунному комплексу (антиген-антитело), а во втором - за счет присоединения к липополисахаридам клеточной стенки микроорганизмов, а также эндотоксину. Независимо от путей активации происходит образование мембранатакующего комплекса белков комплемента, разрушающего антиген.

Вторым и не менее важным фактором, является интерферон . Он бывает альфа-лейкоцитарный, бета-фиброластный и гамма-интерферониммунный. Вырабатываются они соответственно лейкоцитами, фибробластами и лимфоцитами. Первые два вырабатываются постоянно, а гамма-интерферон - только в случае попадания вируса в организм.

Кроме комплемента и интерферонов, к гуморальным факторам относятся лизоцим и бета-лизины . Суть действия данных веществ заключается в том, что, являясь ферментами, они специфически разрушают липополисахаридные последовательности в составе клеточной стенки микроорганизмов. Отличие бета-лизинов от лизоцима заключается в том, что они вырабатываются в стрессорных ситуациях. Кроме указанных веществ, к этой группе относятся: С-реактивный белок, белки острой фазы, лактоферрин, пропердин и др.

Неспецифическая клеточная резистентность обеспечивается фагоцитами: макрофагами - моноцитами и микрофагами - нейтрофилами.

Для обеспечения фагоцитоза эти клетки наделены тремя свойствами:

  • Хемотаксисом - направленным движением к объекту фагоцитоза;
  • Адгезивностью - способностью фиксироваться на объекте фагоцитоза;
  • Биоцидностью - способностью переваривать объект фагоцитоза.

Последнее свойство обеспечивается двумя механизмами – кислородзависимым и кислороднезависимым. Кислородзависимый механизм связан с активацией мембранных ферментов (НАД-оксидазы и др.) и выработкой биоцидных свободных радикалов, которые возникают из глюкозы и кислорода на специальном цитохроме В-245. Кислороднезависимый механизм связан с белками лизосом, закладывающихся в костном мозге. Только сочетание обоих механизмов обеспечивает полное переваривание объекта фагоцитоза.

Лизоцим– термостабильный белок, типа муколитического фермента. Содержится в слезах, слюне, перитонеальной жидкости, плазме и сыворотке крови, в лейкоцитах, материнском молоке и др. Продуцируется моноцитами и тканевыми макрофагами, вызывает лизис многих бактерий, неактивен в отношении вирусов.

Система комплимента –многокомпонентная само собирающаяся система белков сыворотки крови, которая играет важную роль в поддержании гомеостаза. Активируется в процессе самосборки, т.е. последовательного присоединения к образующемуся комплексу отдельных фракций. Продуцируются они в клетках печени, мононуклеарными фагоцитами и содержатся в сыворотке крови в неактивном состоянии.

Комплемент выполняет ряд функций:

  • цитолитическое и цитотоксическое действие клетки-«мишени»;
  • анафилотоксины участвуют в иммунопатологических реакциях;
  • эффективность фагоцитоза иммунных комплексов (через Fc-рецепторы);
  • фрагмент С3b способствует связыванию и захвату иммунных комплексов фагоцитами;
  • фрагменты С3b, С5а и Вb (хемоаттрактанты), участвуют в развитии воспаления.

Интерфероны – неспецифически защищают клетки МКÒ от вирусной инфекции (разные вирусы). В то же время обладает видовой специфичностью – интерферон человека, активен только в Ò человека. Также оказывает антипролиферативное (противоопухолевое), иммуномодулирующее действие.

В зависимости от происхождения, по первичной структуре и функциям их подразделяют на 3 класса:

  • Лейкоцитарный α–интерферон получают в культурах лейкоцитов крови доноров, используя в качестве интерфероногенов вирусы, не опасные для людей (вирусы осповакцины и др.). Он проявляет выраженное противовирусное, а также антипролиферативное (противоопухолевое) действие.
  • Фибробластный β-интерферон получают в полуперевиваемых культурах диплоидных клеток человека, в основном –противоопухолевая активность.
  • Иммунный γ-интерферон получают в перевиваемых культурах лимфобластоидных клеток под действием митогенов Б! или Р! происхождения. Отличается менее выраженным антивирусным эффектом, но сильное иммуномодулирующее действие.

Механизм противовирусного действия интерферона :

Интерферон выходит из пораженной клетки и связывается со специфическими рецепторами (ганглиозидоподобные вещества) тех же или соседних клеток. Рецепторы подают сигнал для синтеза ферментов – протеинкиназы и эндонуклеазы. Ферменты активируются вирусными репликативными комплексами. При этом эндонуклеаза расщепляет вирусную иРНК, а протеинкиназа блокирует трансляцию вирусных белков Þ угнетение репродукции вирусов.

Интерферон не спасает уже пораженную клетку, но предохраняет соседние клетки от инфицирования.

Как было изложено ранее (см. главу 1), в состав функциональ­ного элемента входят микроциркуляторное русло, лимфатичес­кие сосуды, артериоловенулярные сосуды, сосудодвигатель-ные нервы, специфические клетки, а также тучные клетки, гистиоциты и ретикулярные клетки и волокна, образующие ретикулоэндотелиальную сеть. Ретикулоэндотелиальная сеть ха­рактерна для миелоидной и лимфоидной тканей. Ретикуляр­ные клетки способны фагоцитировать антигенные белки, но


лишены подвижности и поэтому называются фиксированными макрофагами. Ретикулоэндотелиальная сеть широко представ­лена в структурах глоточного лимфоидного кольца и вовле­кается в защитные реакции при ряде стоматологических за­болеваний.

Тучные клетки при воздействии повреждающего фактора вы­рабатывают физиологически активные вещества (гепарин, ги-стамин, серотонин, дофамин, ферменты) и выделяют их в периваскулярные пространства функционального элемента. Это приводит к изменению состояния микроциркуляторного рус­ла последнего и развитию первых этапов воспаления: кратков­ременному сужению сосудов с последующим их расширением и появлением гиперемии, повышению проницаемости сосуди­стой стенки, прилипанию ко внутренней стенке сосудов лей­коцитов и моноцитов, их выходу в периваскулярные простран­ства, что лежит в основе образования демаркационной зоны вокруг места повреждения.

Гистиоциты функционального элемента под влиянием по­вреждающих факторов превращаются в макрофаги, способные поглощать и разрушать антигены и микроорганизмы.

Описанные реакции наблюдаются при ряде стоматологичес­ких заболеваний, например при гингивитах, в начальных ста­диях которых отчетливо видна гиперемия десен в пришеечных областях зубов вследствие расширения приносящих сосудов микроциркуляторного русла. При отсутствии или недостаточ­ности лечения увеличивается и количество грамотрицательных бактерий и их эндотоксинов, прогрессируют изменения мик­роциркуляторного русла: усиливаются диапедез лейкоцитов и эритроцитов, экссудация плазмы в периваскулярные простран­ства, нарушается отток по лимфатическим сосудам функцио­нального элемента - возникает отек десен или слизистой обо­лочки рта, что наблюдается, например, при стоматитах раз­личной этиологии. Дальнейшее развитие заболевания связано с остановкой циркуляции крови в микрососудах, нарушением трофики, некрозом - возникает язвенный гингивит (язвенно-некротический стоматит Венсана).

Таким образом, на начальных этапах действия повреждаю­щих агентов к защите организма привлекаются факторы есте­ственной (неспецифической) резистентности, важнейшими элементами которой являются макрофаги (ретикулярные, туч­ные клетки и гистиоциты). Основным механизмом защиты на этой стадии является фагоцитоз.

Фагоцитоз - процесс, объединяющий различные клеточные реакции, направленные на распознавание объекта фагоцито­за, его поглощение, разрушение и удаление из организма. Основные стадии фагоцитоза:


Хемотаксис - движение фагоцита к объекту;

Аттракция - прилипание объекта к поверхности фагоци­та с постепенным погружением в клетку и образованием фагосомы;

Поглощение;

Ферментативное расщепление;

Переваривание.

Фагоцитоз может быть завершенным, когда объект ^практи­чески растворяется и остатки переваренного материала выбра­сываются из клетки, и незавершенным, когда размножающиеся микроорганизмы разрушают фагоцитирующую клетку. Контакт макрофагов с чужеродными веществами заканчивается фаго­цитозом или адгезией, если они превышают размер фагоцита. Фагоцитоз и адгезия обусловлены неспецифическими рецеп­торами на поверхности мембраны фагоцитов. Разнообразие рецепторов - основа чувствительности фагоцитов к многочис­ленным раздражителям и важный показатель их функциональ­ной зрелости и потенциальной активности. Рецепторы позво­ляют макрофагу прочно присоединиться к мишени, опсони-зировать ее (подготовить к фагоцитозу) с помощью иммуно­глобулинов и комплемента, фагоцитировать.

При образовании очага воспаления локомоторная функция фагоцитов имеет решающее значение. Локомоция может быть спонтанной (хемокинез) или вызванной химическим агентом (хемотаксис). Эндоцитоз и фагоцитоз сопровождаются парали­чом двигательной активности клеток.

Фагоциты являются мощными секреторными клетками. Они секретируют ферменты (нейтральные протеиназы, кислые гид­ролазы, лизоцим), ингибиторы ферментов, некоторые белки плазмы (компоненты комплемента, фибронектин), вещества, регулирующие функции и рост других клеток (интерферон, интерлейкин-1). Фагоциты при помощи медиаторной системы разрушают внеклеточные объекты, размер которых исключает возможность их поглощения. Фагоцитарной активностью обла­дают полинуклеарные и мононуклеарные лейкоциты.

Полинуклеарные лейкоциты (макрофаги) - в основном ней-трофилы. Они представляют собой высокодифференцированные короткоживущие клетки, попадающие в кровь из костного мозга после 2 нед созревания. В циркуляторном русле они об­мениваются каждые 5 ч. Попадая в ткани, нейтрофилы живут в них 2-5 сут, почти не меняясь морфологически. Нейтрофи­лы подвижны, отвечают на хемотаксические стимулы, содер­жат гранулы с ферментативной и бактерицидной активностью, фагоцитируют, но не в состоянии обеспечить иммуногенность антигена и индуцировать иммунный ответ. Содержат на повер­хности разнообразные рецепторы к широкому классу ве-


ществ - гистамину, простагландинам, кортикостероидам, им­муноглобулинам.

Первыми в очаг воспаления устремляются нейтрофилы, фор­мирующие демаркационный вал с участием медиаторов вос­паления и кининов. Сами нейтрофилы обладают цитотоксичес-кими свойствами и включаются в развитие воспалительного процесса, определяя в известной мере его дальнейшее тече­ние и исход. Затем в очаге воспаления накапливаются моно­нуклеарные фагоциты, принимающие участие в его санации, | ликвидации органических разрушений, восстановлении ткане­вого дефекта. Несостоятельность функции полинуклеарных фагоцитов и усиленный фагоцитоз распадающихся клеток мак­рофагами могут способствовать развитию гнойного воспаления, которое обычно вызывается стафилококками и стрептококка­ми, реже - синегнойной палочкой, обычно присутствующи­ми в полости рта. Гнойные формы воспаления кожи губ, крас­ной каймы губ, в углах рта, на слизистой оболочке полости рта - нередкое явление в стоматологической практике. В соот­ветствующих руководствах по стоматологии описаны призна-I ки, характер течения и методы лечения таких гнойных пато­логических процессов, как импетиго, заеда, фурункул, шанк-риформная пиодермия, абсцессы и флегмоны челюстно-лицевой области.


ют во всех тканях организма. Длительность их жизни - от не­скольких недель до нескольких месяцев. В функциональном отношении среди гетерогенных мононуклеарных макрофагов различают клетки-эффекторы, клетки-продуценты биологичес­ки активных веществ, добавочные клетки. Они продуцируют ин-терлейкин-1, компоненты комплемента, интерфероны, лизо-цим, активатор плазминогена, монокины, цитокин, проста-гландин Е, тромбоксан А, лейкотриены. Мононуклеарные фа­гоциты составляют одну из основных частей системы защиты организма от патогенных агентов - бактерий, грибов, простей­ших и других микроорганизмов. Они элиминируют мертвые и поврежденные клетки, органические и инертные частицы, секретируют биологически активные вещества. Макрофаги уча­ствуют в процессах воспаления, регенерации, репарации, фиб-рогенеза, выполняют секреторную, цитотоксическую, а также кооперативную и эффекторную функции в специфических иммунных реакциях. Первичная несостоятельность системы моноцитарных фагоцитов, разобщение ее функционирования с системой полиморфно-ядерных лейкоцитов приводят к раз­витию гранулематозного воспаления, как это иногда бывает при периодонтитах (кистогранулема).

Фибронектин - один из продуцентов макрофагов, высоко­молекулярный гликопротеид, выполняет опсонизирующую и адгезивную функции. Характеризуется высоким аффинитетом (сродством) к коллагену, фибрину, актину, гепарину. Опсо-низирует небактериальные частицы, увеличивает фагоцитарную активность звездчатых ретикулоэндотелиоцитов (купферовских клеток) при действии различных патогенных агентов.

Простагландины синтезируются макрофагами, клетками почек, эндокринных желез и других тканей. Основной меха­низм их действия - влияние на систему мембранных алени-латциклаз. Простагландины различных серий (Е, F, А) регу­лируют клеточный и гуморальный ответы. Они ингибируют активность Т-лимфоцитов, угнетают продукцию антител, миг­рацию макрофагов, взаимодействуют с лимфокинами. Проста­гландины, вероятно, играют роль медиаторов между макрофа-гальными фагоцитами и подвижностью клеток в очагах воспа­ления, т.е. являются иммунорегуляторами воспалительных про­цессов. Угнетение синтеза простагландинов приводит к увели­чению иммунного ответа. Наиболее существенная роль в регу­ляции последнего принадлежит простагландину Е. Макрофаги посредством медиаторов монокинов усиливают синтез колла­гена, пролиферацию фибробластов, эндотелия сосудов.

Интерферон повышает естественную резистентность организ­ма. Синтезируется в основном макрофагами, лимфоцитами и фибробластами при действии вирусов. Для нормальной продук­ции интерферона в организме необходимо полноценное фун-


кционирование Т-системы лимфоцитов; при этом антивирус­ный эффект в значительной степени связан с активацией Т-лимфоцитов, продуцирующих гамма-интерферон. Известны три типа интерферона: альфа-интерферон, получаемый из лей­коцитов донорской крови человека; бета-интерферон - из дип­лоидных клеток человека и гамма-интерферон, спонтанно про­дуцируемый и иммунный, получаемый путем воздействия ми-тогенов на Т-лимфоциты. Все типы интерферона оказывают антивирусный, иммуномодулирующий, антипролиферативный эффекты. Интерферон способен блокировать репликацию ДНК-и РНК-вирусов. Интерферон подавляет соединение вирусной РНК с рибосомами клетки. Иммуномодулирующее влияние интерферона связано с его способностью увеличивать фагоци­тоз, синтез антител, повышать цитотоксическую активность клеток, прежде всего естественных клеток-киллеров. Альфа-ин­терферон способен ингибировать клеточную пролиферацию, рост опухолевых клеток, угнетать образование антител. Стиму­лируют продукцию интерферона мефенаминовая кислота, ле- вамизол. Существенно снижают (подавляют) продукцию интер­ферона препараты, содержащие АКТГ. Продукция интерферо­на возрастает при вирусных поражениях органов полости рта: простом пузырьковом лишае (простой герпес), рецидивирую­щем герпесе, остром герпетическом стоматите, герпетической ангине, бородавках.

Свойство цитотоксичности и способность к образованию мно­гих цитокинов присуще также нестимулированным лимфоци­там - естественным клеткам-киллерам. Эти клетки действуют независимо от антигенной стимуляции, наличия антител и ком­племента. Они способны лизировать некоторые виды инфици­рованных вирусами опухолевых, аутологичных клеток, осуще­ствляя тем самым иммунный надзор; участвуют в регуляции дифференцировки, пролиферации и функциональной активно­сти В-лимфоцитов, процессах образования антител, синтезе иммуноглобулинов. Естественные клетки-киллеры обеспечивают первый уровень защиты до включения иммунных механизмов.

Пропердин - высокомолекулярный белок глобулиновой фракции сыворотки крови; рассматривается как нормальное антитело, образуемое в результате естественной скрытой им­мунизации различными веществами полисахаридной природы. Способен соединяться с полисахаридными структурами мик­робных клеток. В совокупности с другими гуморальными фак­торами пропердин обеспечивает бактерицидное, гемолитичес­кое, вируснейтрализующее свойства сыворотки крови, явля­ется медиатором иммунных реакций.

Система комплемента относится к важнейшим гуморальным эффекторным системам организма. Она состоит из 20 белков

Неспецифическая резистентность осуществляется клеточными и гуморальными факторами, тесно взаимодействующими в достижении конечного эффекта - катаболизма чужеродной субстанции: макрофагами, нейтрофилами, комплементом и другими клетками и растворимыми факторами.
К гуморальным факторам неспецифической резистентности принадлежат лейкины - вещества, полученные из нейтрофилов, проявляющие бактерицидное действие в отношении ряда бактерий; эритрин - вещество, полученное из эритроцитов, бактерицидное в отношении дифтерийной палочки; лизоцим - фермент, продуцируемый моноцитами, макрофагами, лизирует бактерии; пропердин - белок, обеспечивающий бактерицидные, вируснейтрализующие свойства сыворотки крови; бетта-лизины - бактерицидные факторы сыворотки крови, выделяемые тромбоцитами.
Факторами неспецифической резистентности также являются кожа и слизистые оболочки организма - первая линия защиты, где вырабатываются вещества, оказывающие бактерицидное действие. Также подавляют рост и размножение микробов слюна, желудочный сок, пищеварительные ферменты.
В 1957 году английский вирусолог Айзекс и швейцарский вирусолог Лин-денманн, изучая явление взаимного подавления (интерференции) вирусов в куриных эмбрионах, опровергли связь процесса интерференции с конкуренцией между вирусами. Оказалось, что интерференция обусловлена формированием в клетках конкретного низкомолекулярного белкового вещества, которое удалось выделить в чистом виде. Ученые назвали этот белок интерфероном (ИФН), поскольку он подавлял репродукцию вирусов, создавая в клетках состояние резистентности к их последующему реинфицированию.
Интерферон образуется в клетках в ходе вирусной инфекции и обладает хорошо выраженной видовой специфичностью, то есть проявляет свое действие только в том организме, в клетках которого образовался.
При встрече организма с вирусной инфекцией именно продукция интерферона является наиболее быстрой ответной реакцией на заражение. Интерферон формирует защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, делает клетки непригодными для размножения вирусов.
В 1980 году Комитетом экспертов ВОЗ была принята и рекомендована новая классификация, согласно которой все интерфероны человека разделяются на три класса:
- альфа-интерферон (лейкоцитарный) - основной препарат для лечения вирусных и раковых заболеваний. Получают его в культуре лейкоцитов крови доноров, используя в качестве интерфероногенов вирусы, не представляющие опасности для людей (вирус Сендай);
- бета-интерферон - фибробластный, продуцируется фибробластами, у этого типа интерферона противоопухолевая активность превалирует над противовирусной;
- гамма-интерферон - иммунный, вырабатывается сенсибилизированными лимфоцитами Т-типа при повторной встрече с "известным" им антигеном, а также при стимуляции лейкоцитов (лимфоцитов) митогенами - ФГА и другими лек-тинами. Обладает выраженным иммуномодулирующим действием.
Все интерфероны отличаются друг от друга по набору аминокислот и антигенным свойствам, а также по выраженности тех или иных форм биологической активности. Описаны следующие свойства интерферонов: антивирусные, имму-номодулирующие, противоопухолевые; помимо этого интерфероны подавляют рост клеток, изменяют проницаемость клеточных мембран, активируют макрофаги, усиливают цитотоксичность лимфоцитов, активируют последующий синтез интерферона, а также обладают "гормоноподобной" активацией жизнедеятельности клеток.
Во всех звеньях взаимодействия компонентов иммунной системы как на уровне образования, активации и проявления их функций остается много белых пятен для того, чтобы создать рабочую схему действия иммунной системы и на этой основе прогнозировать развитие дальнейших событий в организме.

Активные неспецифические механизмы поддержания антигенно-структурного гомеостаза вместе с пассивными являются первым рубежом обороны внутренней среды организма от чужеродных антигенов. Эти механизмы представлены сложным комплексом факторов - морфологических, биохимических, общефизиологических. Способность к их функционированию передастся по наследству от родителей, однако потенциальный максимум этих функций - показатель индивидуальный. Это и определяет неодинаковую степень у различных индивидуумов.

К неспецифической резистентности относят гуморальные и клеточные факторы защиты. Неспецифическая резистентность стереотипна. Она не дифференцирует антигены, имеет фазный характер, что связано с регуляцией ее со стороны нервной и эндокринной систем.

К гуморальным факторам относят: комплемент, интерфероны, лизоцим, бета-лизины и клеточные факторы: нейтрофильные лейкоциты (микрофаги).

Основным гуморальным фактором песпецифической резистентности является комплемент - сложный комплекс белков сыворотки крови (около 20), которые участвуют в уничтожении чужеродных антигенов, активации свертывания, образовании кининов. Для комплемента характерно формирование быстрого, многократно усиливающегося ответа на первичный сигнал за счет каскадного процесса. Активироваться комплемент может двумя путями: классическим и альтернативным. В первом случае активация происходит за счет присоединения к иммунному комплексу (антиген-антитело), а во втором - за счет присоединения к липополисахаридам клеточной стенки микроорганимов, а также эндотоксину. Независимо от путей активации происходит образование мембранатакующего комплекса белков комплемента, разрушающего антиген.

Вторым и не менее важным фактором, является интерферон . Он бывает альфа-лейкоцитарный, бета-фиброластный и гамма-интерферониммунный. Вырабатываются они соответственно лейкоцитами, фибробластами и лимфоцитами. Первые два вырабатываются постоянно, а гамма-интерферон - только в случае попадания вируса в организм.

Кроме комплемента и интерферонов, к гуморальным факторам относятся лизоцим и бета-лизины . Суть действия данных веществ заключается в том, что, являясь ферментами, они специфически разрушают липополисахаридные последовательности в составе клеточной стенки микроорганизмов. Отличие бета-лизинов от лизоцима заключается в том, что они вырабатываются в стрессорных ситуациях. Кроме указанных веществ, к этой группе относятся: С-реактивный белок, белки острой фазы, лактоферрин, пропердин и др.

Неспецифическая клеточная резистентность обеспечивается фагоцитами: макрофагами - моноцитами и микрофагами - нейтрофилами.

Для обеспечения фагоцитоза эти клетки наделены тремя свойствами:

  1. Хемотаксисом - направленным движением к объекту фагоцитоза;
  2. Адгезивностью - способностью фиксироваться на объекте фагоцитоза;
  3. Биоцидностью - способностью переваривать объект фагоцитоза.

Последнее свойство обеспечивается двумя механизмами - кислородзависимым и кислороднезависимым. Кисло-родзависимый механизм связан с активацией мембранных ферментов (НАД-оксидазы и др.) и выработкой биоцидных свободных радикалов, которые возникают из глюкозы и кислорода на специальном цитохроме В-245. Кислороднезависимый механизм связан с белками лизосом, закладывающихся в костном мозге. Только сочетание обоих механизмов обеспечивает полное переваривание объекта фагоцитоза.

Неспецифические факторы защиты - механические, физические и гуморальные факторы неспецифической резистентности организма.

Главными механическими барьерами зашиты являются кожа и слизистые оболочки. Здоровая кожа наряду с механической барьерной функцией обладает выраженными бактерицидными свойствами, обусловленными наличием нормальной микрофлоры на её поверхности. Определение степени бактерицидности кожи широко применяется в гигиенических и клинических исследованиях.

Неспецифические факторы защиты слизистых оболочек те же, что и у кожи, например кислая реакция (рН) желудочного сока (ниже 3), влагалища (4-4,5). Кроме того, клетки слизистых оболочек содержат лизоцим и секреторный иммуноглобулин класса А (SIgA), играющие важную роль в устойчивости кишечника, респираторных и мочеполовых путей к повреждающим агентам.

К механическим факторам относятся физиологические и патологические процессы, обеспечивающие удаление патогенных микроорганизмов, кашель, повышенное слизеотделение, чихание, рвота, потоотделение и др. Физическими фактором саногенеза, мобилизующим защитные реакции организма, является повышение температуры тела, наблюдаемое при многих заболеваниях.

Особое место среди неспецифических факторов защиты принадлежит фагоцитозу. К гуморальным неспецифическим факторам защиты относятся естественные антитела, комплемент, лизоцим, пропердин, бета-лизины, лейкины, интерферон, ингибиторы вирусов и другие вещества, постоянно присутствующие в сыворотке крови, секретах слизистых оболочек и тканях организма.

Значительную роль в обеспечении неспецифической резистентности организма играют также гормоны коры надпочечников (глюко- и минералокортикоиды).

Фагоцитоз - процесс поглощения, разрушения и выделения из организма патогенов.

В человеческом организме ответственными за него являются моноциты и нейтрофилы.

Процесс фагоцитоза бывает завершенным и незавершенным.

Завершенный фагоцито з состоит из следующих стадий:
активация фагоцитирующей клетки;
хемотаксис или движение к фагоцитируемому объекту;
прикрепление к данному объекту (адгезия);
поглощение этого объекта;
переваривание поглощенного объекта.

Незавершенный фагоцитоз прерывается на стадии поглощения, при этом патоген остается живым.

Стадии фагоцитоза

В процессе фагоцитоза образуются следующие структуры:

· фагосома – образуется после прикрепления фагоцита к объекту путем замыкания его мембраны вокруг патогена;

· фаголизосома – образуется в результате слияния фагосомы с лизосомой фагоцитирующей клетки. После ее образования начинается процесс переваривания.

Вещества из лизосомальных гранул (гидролитические ферменты, щелочная
фосфатаза, миелопероксидаза, лизоцим) могут разрушать чужеродные вещества двумя механизмами:

· кислороднезависимый механизм -осуществляется гидролитическими ферментами;

· кислородзависимый механизм - осуществляется при участии миелопероксидазы, перекиси водорода, супероксидного аниона, активного кислорода и гидроксильных радикалов.

Комплемент: краткое определение

Комплементом называют сложный комплекс белков, действующий совместно для удаления внеклеточных форм патогена; система активируется спонтанно определенными патогенами или комплексом антиген:антитело. Активированные белки либо непосредственно разрушают патоген (киллерное действие), либо обеспечивают лучшее их поглощение фагоцитами (опсонизирующее действие); либо выполняют функцию хемотаксических факторов, привлекая в зону проникновения патогена клетки воспаления.

Комплекс белков комплемента формирует каскадные системы, обнаруженные в плазме крови. Для этих систем характерно формирование быстрого, многократно усиленного ответа на первичный сигнал за счет каскадного процесса. В этом случае продукт одной реакции служит катализатором последующей, что в конечном итоге приводит к лизису клетки или микроорганизма.

Существует два главных пути (механизма) активации комплемента - классический и альтернативный.

Классический путь активации комплемента инициируется взаимодействием компонента комплемента С1q с иммунными комплексами (антителами, связанными с поверхностными антигенами бактериальной клетки); в результате последующего развития каскада реакций образуются белки с цитолитической (киллерной) активностью, опсонины, хемоаттрактанты. Такой механизм соединяет приобретенный иммунитет (антитела) с врожденным иммунитетом (комплемент).

Альтернативный путь активации комплемента инициируется взаимодействием компонента комплемента С3b с поверхностью бактериальной клетки; активация происходит без участия антител. Данный путь активации комплемента относится к факторам врожденного иммунитета.

В целом система комплемента относится к основным системам врожденного иммунитета, функция которых состоит в том, чтобы отличить "свое" от "не своего". Эта дифференциация в системе комплемента осуществляется благодаря присутствию на собственных клетках организма регуляторных молекул, подавляющих активацию комплемента.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-1.jpg" alt=">ФАКТОРЫ и МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ Титова Татьяна Николаевна Кафедра лабораторной диагностики"> ФАКТОРЫ и МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОЙ РЕЗИСТЕНТНОСТИ Титова Татьяна Николаевна Кафедра лабораторной диагностики ИПО БГМУ Уфа-2014

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-2.jpg" alt="> Для возникновения инфекционного процесса важное значение наряду со свойствами возбудителя имеет состояние макроорганизма:"> Для возникновения инфекционного процесса важное значение наряду со свойствами возбудителя имеет состояние макроорганизма: восприимчивость (чувствительность) или невосприимчивость (резистентность) к инфекции. ФАКТОРЫ НЕСПЕЦИФИЧЕСКОЙ ЗАЩИТЫ ОРГАНИЗМА Гуморальные Внешние барьеры Внутренние барьеры Клеточные факторы факторы Нормальная Лимфоузлы Фагоциты Лизоцим микрофлора Белки острой фазы Кожа Тканевые, Естественные Комплемент клеточные киллеры Слизистые барьеры Интерфероны Другие цитокины

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-3.jpg" alt="> НОРМАЛЬНАЯ МИКРОФЛОРА ОРГАНИЗМА ЧЕЛОВЕКА Препятствует адгезии и колонизации поверхностей тела патогенными"> НОРМАЛЬНАЯ МИКРОФЛОРА ОРГАНИЗМА ЧЕЛОВЕКА Препятствует адгезии и колонизации поверхностей тела патогенными микроорганизмами. Защитное действие обусловлено конкуренцией за питательные вещества, изменением р. Н среды, продукцией колицинов и других активных факторов, препятствующих внедрению и размножению патогенных микроорганизмов. Способствует созреванию иммунной системы и поддержанию ее в состоянии высокой функциональной активности, так компоненты микробной клетки неспецифически стимулируют клетки иммунной системы. Пример: дисбактериозы

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-4.jpg" alt="> ВНЕШНИЕ БАРЬЕРЫ Кожа и слизистые оболочки служат барьером, препятствующим проникновению"> ВНЕШНИЕ БАРЬЕРЫ Кожа и слизистые оболочки служат барьером, препятствующим проникновению внутрь организма большинства микробов. Неспецифические механизмы Механический барьер удаление микроорганизмов с поверхности кожи. (слущивание верхних слоев эпителия) Бактерицидные свойства потовые и сальные железы (молочная и жирные кислоты, ферменты); моча и секреты слюнных и пищевари тельных желез (лизоцим). Специфические реакции Секреторные иммуноглобулины – обладают бактерицидными свойствами и активируют местные фагоцитирующие клетки

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-5.jpg" alt="> ВНУТРЕННИЕ БАРЬЕРЫ Система лимфатических сосудов и лимфатических узлов. фагоцитоз на"> ВНУТРЕННИЕ БАРЬЕРЫ Система лимфатических сосудов и лимфатических узлов. фагоцитоз на месте доставка возбудителя фагоцитами в лимфатические узлы или др. местные лимфатические образования (воспалительный процесс) распространение процесса на следующие регионарные лимфоидные образования. Гисто-гематические барьеры препятствуют проникновению возбудителей из крови в головной мозг, репродуктивную систему, глаза. Мембрана каждой клетки служит барьером для проникновения в нее посторонних частиц и молекул.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-6.jpg" alt="> КЛЕТОЧНЫЕ ФАКТОРЫ ФАГОЦИТИРУЮЩИЕ КЛЕТКИ Защитная роль подвижных клеток крови и тканей"> КЛЕТОЧНЫЕ ФАКТОРЫ ФАГОЦИТИРУЮЩИЕ КЛЕТКИ Защитная роль подвижных клеток крови и тканей впервые обнаружена И. И. Мечниковым в 1883 г. Он назвал эти клетки фагоцитами и сформулировал основные положения фагоцитарной теории иммунитета.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-7.jpg" alt="> КЛЕТОЧНЫЕ ФАКТОРЫ Все фагоцитирующие клетки организма, по И. И. Мечникову, "> КЛЕТОЧНЫЕ ФАКТОРЫ Все фагоцитирующие клетки организма, по И. И. Мечникову, подразделяются на микрофаги - полиморфноядерные гранулоциты крови: нейтрофилы, эозинофилы и базофилы; макрофаги (соединительной ткани, печени, легких и др.) вместе с моноцитами крови и их костномозговыми предшественниками (промоноциты и монобласты) объединены в особую систему мононуклеарных фагоцитов (СМФ).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-8.jpg" alt="> КЛЕТОЧНЫЕ ФАКТОРЫ Микрофаги и макрофаги имеют общее миелоидное происхождение "> КЛЕТОЧНЫЕ ФАКТОРЫ Микрофаги и макрофаги имеют общее миелоидное происхождение - от полипотентной стволовой клетки, которая является единым предшественником грануло и моноцитопоэза.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-9.jpg" alt="> Происхождение микрофагов и макрофагов Стволовая "> Происхождение микрофагов и макрофагов Стволовая полипотентная Макрофаги Микрофаги клетка Периферическая Моноциты(1 -6%) Гранулоциты Клетка- кровь (60 -70% от всех предшественник лейкоцитов) миелоцитов Время циркуля- П/период 22 часа П/период 6, 5 часа ции в крови Вне кровяного Тканевые - Предшественник гранулоцитов и русла макрофаги макрофагов Монобласт Миелобласт Промоноцит Промиелоцит Моноцит Базофил Эозинофил Нейтрофил Тканевые макрофаги

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-11.jpg" alt=">Все фагоцитирующие клетки характеризуются общностью основных функций, сходством структур и метаболических"> Все фагоцитирующие клетки характеризуются общностью основных функций, сходством структур и метаболических процессов. Наружная плазматическая мембрана всех фагоцитов отличается выраженной складчатостью и несет множество специфических рецепторов и антигенных маркеров, которые постоянно обновляются. Лизосомный аппарат – высоко развит, содержит богатый арсенал ферментов. Мембраны лизосом способны к слиянию с мембранами фагосом (фагосомная вакуоль) или с наружной мембраной (секреция лизосомных ферментов во внеклеточное пространство)

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-12.jpg" alt=">Рецепторы макрофага: Int. R рецептор к гамма интерферону; Fc. R рецептор к"> Рецепторы макрофага: Int. R рецептор к гамма интерферону; Fc. R рецептор к Fc–фрагменту; C 3 R рецептор к фракции комплемента С 3; MFR маннозо фруктозный рецептор. Антиген МНС класса II

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-13.jpg" alt=">Три функци фагоцитов: Защитная - очистка организма от инфекционных агентов, продуктов"> Три функци фагоцитов: Защитная - очистка организма от инфекционных агентов, продуктов распада тканей и т. д. ; Представляющая - презентация лимфоцитам антигенных эпитопов на мембране фагоцита; Секреторная секреция лизосомных ферментов и цитокинов. МАКРОФАГ под электронным микроскопом

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-14.jpg" alt=">Стадии фагоцитоза: 1 – хемотаксис 2 – адгезия (прикрепление) 3 – эндоцитоз 4"> Стадии фагоцитоза: 1 – хемотаксис 2 – адгезия (прикрепление) 3 – эндоцитоз 4 – внутриклеточное переваривание

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-15.jpg" alt=">1. Хемотаксис целенаправленное передвижение фагоцитов в окружающей среде. Связано с наличием на"> 1. Хемотаксис целенаправленное передвижение фагоцитов в окружающей среде. Связано с наличием на мембране специфических рецепторов

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-16.jpg" alt=">2. Адгезия (прикрепление) непосредственно предшествует эндоцитозу (захвату). ">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-17.jpg" alt=">3. Эндоцитоз основная физиологическая функция профессиональных фагоцитов. Различают фагоцитоз"> 3. Эндоцитоз основная физиологическая функция профессиональных фагоцитов. Различают фагоцитоз - в отношении частиц с диаметром не менее 0, 1 мкм; пиноцитоз - в отношении более мелких частиц и молекул. Механизмы: захват антигенов обтеканием их псевдоподиями без участия специфических рецепторов; маннозофукозные рецепторы распознают углеводные компоненты поверхностных структур микроорганизмов (бактерий, дрожжеподобных грибов рода Candida и др.). рецепторы для Fc фрагмента иммуноглобулинов и для СЗ фракции комплемента. Такой фагоцитоз называют иммунным (наиболее эффективный).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-18.jpg" alt=">Эндоцитоз зависит от патогенности микроорганизмов. Фагоцитируются непосредственно авирулентные или низко вирулентныебактерии (бескапсульные"> Эндоцитоз зависит от патогенности микроорганизмов. Фагоцитируются непосредственно авирулентные или низко вирулентныебактерии (бескапсульные штаммы пневмококка, штаммы стрептококка, лишенные гиалуроновой кислоты и М протеина). Фагоцитируются только после опсонизации комплементом и/или антителами большинство бактерий, наделенных факторами агрессивности (стафилококки - А протеином, кишечные палочки - выраженным капсульным антигеном, сальмонеллы - Vi антигеном, и др.).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-19.jpg" alt=">Активность фагоцитов характеризуется фагоцитарными показателями и опсоно фагоцитарным индексом. Фагоцитарные показатели число бактерий,"> Активность фагоцитов характеризуется фагоцитарными показателями и опсоно фагоцитарным индексом. Фагоцитарные показатели число бактерий, поглощенных или «переваренных» одним фагоцитом в единицу времени. Опсоно-фагоцитарный индекс отношение фагоцитарных показателей, полученных с иммунной (содержащей опсонины) и неиммунной сывороткой. Эти показатели используются для определения иммунного статуса индивидуума, для подтверждения факта заболевания (серодиагностика).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-20.jpg" alt=">4. Внутриклеточное переваривание начинается по мере поглощения бактерий или других объектов. Происходит в фаголизосомах"> 4. Внутриклеточное переваривание начинается по мере поглощения бактерий или других объектов. Происходит в фаголизосомах (слияние лизосом с фагосомами). Осуществление механизмов микробоцидности фагоцитов. Кислороднезависимые механизмы опосредованы ферментами (в т. ч. лизоцим), попадающими в фагосому в результате ее слияния с лизосомами. Кислородзависимые механизмы связаны с «окислительным взрывом» . выбросом биологически активных продуктов восстановления кислорода (Н 2 О 2, ОН).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-22.jpg" alt=">Механизмы выживания фагоцитированных микроорганизмов: способность препятствовать слиянию лизосом с фагосомами (токсоплазмы,"> Механизмы выживания фагоцитированных микроорганизмов: способность препятствовать слиянию лизосом с фагосомами (токсоплазмы, микобактерии туберкулеза); устойчивость к действию лизосомных ферментов (гонококки, стафилококки, стрептококки группы А и др.); способность после эндоцитоза покидать фагосому, избегая действия микробоцидных факторов, и длительно персистировать в цитоплазме фагоцитов (риккетсии и др.).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-23.jpg" alt=">Презентативная (представляющая) функция макрофагов состоит в фиксации на наружной мембране"> Презентативная (представляющая) функция макрофагов состоит в фиксации на наружной мембране антигенных эпитопов микроорганизмов. В таком виде они бывают представлены макрофагами для их специфического распознавания клетками иммунной системы - Т лимфоцитами

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-25.jpg" alt=">В тех случаях, когда воспалительной реакции с участием фагоцитов оказывается недостаточно, секреторные продукты"> В тех случаях, когда воспалительной реакции с участием фагоцитов оказывается недостаточно, секреторные продукты макрофагов обеспечивают вовлечение лимфоцитов и индукцию специфического иммунного ответа.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-27.jpg" alt="> Естественные клетки-киллеры (ЕК) Морфология ЕК Большие гранулосодержащие лимфоциты. "> Естественные клетки-киллеры (ЕК) Морфология ЕК Большие гранулосодержащие лимфоциты. Содержат азурофильные цитоплазматические гранулы (аналоги лизосом фагоцитов) Фагоцитарной функцией ЕК не обладают. Неспецифический характер цитотоксического действия отличает эти клетки от антигенспецифических Т киллеров. Среди лейкоцитов крови человека ЕК составляют от 2 до 12%. Ген E 4 bp 4 отвечает за производство клеток киллеров в костном мозге. (Результаты исследования опубликованы в Nature Immunology)

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-28.jpg" alt="> Гуморальные факторы Комплемент сложный комплекс белков сыворотки крови. "> Гуморальные факторы Комплемент сложный комплекс белков сыворотки крови. Находятся обычно в неактивном состоянии. Активируется при соединении антигена с антителом или при агрегации антигена. В состав входят 20 белков. Основные компоненты комплемента: С 1, С 2, СЗ, С 4. . . С 9. Важную роль играют также факторы В, D и Р (пропердин). Белки комплемента относятся к глобулинам (5 10 % от всех белков крови) Отличаются между собой по ряду физико химических свойств.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-29.jpg" alt=">Функции комплемента: участвует в лизисе микробных и других клеток (цитотоксическое"> Функции комплемента: участвует в лизисе микробных и других клеток (цитотоксическое действие); принимает участие в анафилаксии; участвует в фагоцитозе. Комплемент является компонентом многих иммунолитических реакций, направленных на освобождение организма от микробов и других чужеродных клеток и антигенов (например, опухолевых клеток, трансплантата).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-30.jpg" alt="> Механизм активации комплемента представляет собой каскад ферментативных протеолитических реакций, в результате которого"> Механизм активации комплемента представляет собой каскад ферментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стенку бактерии и других клеток. Три пути активации комплемента: классический, альтернативный, лектиновый.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-31.jpg" alt="> Классический путь Комплемент активируется комплексом антиген антитело. Для этого достаточно участия в связывании"> Классический путь Комплемент активируется комплексом антиген антитело. Для этого достаточно участия в связывании антигена одной молекулы Ig. M или двух молекул Ig. G. Этапы активации комплемента. 1) Присоединение к комплексу АГ+АТ компонента С 1; 2) Последовательная активация «ранних» компонентов комплемента: С 4, С 2, СЗ. Эта реакция имеет характер усиливающегося каскада (одна молекула предыдущего компонента активирует несколько молекул последующего); 3) «Ранний» компонент комплемента СЗ активирует компонент С 5, который обладает свойством прикрепляться к мембране клетки. 4) На компоненте С 5 путем последовательного присоединения «поздних» компонентов С 6, С 7, С 8, С 9 образуется литический (мембраноатакующий комплекс), который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-32.jpg" alt=">Классический путь внедрение комплекса в мембрану">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-33.jpg" alt=">Классический путь внедрение комплекса в мембрану клетки ">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-34.jpg" alt=">Альтернативный путь Проходит без участия антител. Характерен для защиты от грамотрицательных микробов. Каскадная"> Альтернативный путь Проходит без участия антител. Характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция начинается с взаимодействия антигена (например, полисахарида) с протеинами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути - образуется мембраноатакующий комплекс.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-35.jpg" alt=">Альтернативный путь ">

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-36.jpg" alt=">Лектиновый путь Происходит без участия антител. Иинициируется особым маннозосвязывающим белком сыворотки крови, который"> Лектиновый путь Происходит без участия антител. Иинициируется особым маннозосвязывающим белком сыворотки крови, который после взаимодействия с остатками маннозы на поверхности микробных клеток катализирует С 4. Дальнейший каскад реакций сходен с классическим путем.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-37.jpg" alt=">Лизоцим протеолитический фермент, синтезируемый фагоцитами. Содержится в крови, лимфе, молоке, сперме, урогенитальном тракте,"> Лизоцим протеолитический фермент, синтезируемый фагоцитами. Содержится в крови, лимфе, молоке, сперме, урогенитальном тракте, на слизистых оболочках дыхательных путей, ЖКТ, в мозге. Отсутствует только в спинномозговой жидкости и передней камере глаза. Китайские учёные вывели трансгенных коров, молоко которых содержит человеческий лизоцим. Механизм действия Разрушает гликопротеиды (мурамилдипептид) клеточной стенки бактерий, что ведет к их лизису и способствует фагоцитозу поврежденных клеток.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-38.jpg" alt=">Лизоцим Функции: бактерицидное и бактериостатическое действие активирует фагоцитоз и"> Лизоцим Функции: бактерицидное и бактериостатическое действие активирует фагоцитоз и образование антител. Нарушение синтеза лизоцима =>снижение резистентности организма, возникновение воспалительных и инфекционных заболеваний. Лечение препаратами лизоцима (из яичного белка или путем биосинтеза).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-39.jpg" alt=">Интерферон Относится к важным защитным белкам иммунной системы. Открыт в 1957 г. "> Интерферон Относится к важным защитным белкам иммунной системы. Открыт в 1957 г. Семейство белков гликопротеидов Синтезируются клетками иммунной системы и соединительной ткани. Обладают относительной видоспецифичностью.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-40.jpg" alt=">Три типа интерферонов: Альфа-интерферон лейкоцитарный – вырабатывается лейкоцитами; "> Три типа интерферонов: Альфа-интерферон лейкоцитарный – вырабатывается лейкоцитами; Бета-интерферон – фибробластный – синтезируется фибробластами (клетками соединительной ткани); Гамма-интерферон иммунный – вырабатывается активированными Т лимфоцитами, макрофагами, естественными киллерами, т. е. иммунными клетками.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-41.jpg" alt=">Синтезируется постоянно (концентрация в крови = примерно 2 МЕ/мл). Выработка интерферона резко возрастает"> Синтезируется постоянно (концентрация в крови = примерно 2 МЕ/мл). Выработка интерферона резко возрастает при инфицировании вирусами

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-42.jpg" alt=">Функции интерферонов: противовирусное действие противоопухолевая защита (задерживает пролиферацию опухолевых"> Функции интерферонов: противовирусное действие противоопухолевая защита (задерживает пролиферацию опухолевых клеток) иммуномодулирующая активность (стимулирует фагоцитоз, естественные киллеры, регулирет антителообразование В клетками, активирует экспрессию главного комплекса гистосовместимости).

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-43.jpg" alt=">Механизм действия. Непосредственно на вирус вне клетки не действует, а связывается со "> Механизм действия. Непосредственно на вирус вне клетки не действует, а связывается со специальными рецепторами клеток и оказывает влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков. Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или поступать в организм извне.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-44.jpg" alt=">Получение интерферона 1 способ путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным"> Получение интерферона 1 способ путем инфицирования лейкоцитов или лимфоцитов крови человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конструируют из него препараты интерферона. 2 способ генно инженерный путем выращивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Рекомбинантный интерферон нашел широкое применение в медицине

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-45.jpg" alt=">Использование интерферона с профилактической целью при многих вирусных инфекциях (грипп); "> Использование интерферона с профилактической целью при многих вирусных инфекциях (грипп); с лечебной целью при хронических вирусных инфекциях (гепатиты (В, С, D), герпес, рассеянный склероз и др); дает положительные результаты при лечении злокачественных опухолей и заболеваний, связанных с иммунодефицитами.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-46.jpg" alt=">Защитные белки сыворотки крови Принимают участие в защите организма от микробов и других антигенов"> Защитные белки сыворотки крови Принимают участие в защите организма от микробов и других антигенов Белки острой фазы (С реактивный белок, противовоспалительные и др.) Вырабатываются в печени в ответ на повреждение тканей и клеток. СРБ способствует опсонизации бактерий и является индикатором воспаления. Маннозосвязывающий белок - нормальный протеин сыворотки крови. Способен прочно связываться с остатками маннозы, находящимися на поверхности микробных клеток, и опсонизировать их. Способствует фагоцитозу, активирует систему комплемента по лектиновому пути.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-47.jpg" alt=">Пропердин -гамма глобулин нормальной сыворотки крови. Способствует активации комплемента по альтернативному пути Фибронектин"> Пропердин -гамма глобулин нормальной сыворотки крови. Способствует активации комплемента по альтернативному пути Фибронектин - универсальный белок плазмы и тканевых жидкостей, синтезируемый макрофагами. Обеспечивает опсонизацию антигенов и связывание клеток с чужеродными веществами (фагоцитов с антигенами и микробами), экранирует дефекты эндотелия сосудов, препятствуя тромбообразованию. Бета-лизины - белки сыворотки крови, синтезируемые тромбоцитами. Оказывают повреждающее действие на цитоплазматическую мембрану бактерий.

Src="https://present5.com/presentation/3/184293348_437234657.pdf-img/184293348_437234657.pdf-48.jpg" alt=">СПАСИБО за ВНИМАНИЕ ">