Заболевания гипоталамо гипофизарно надпочечниковой системы. Стресс-реализующие системы - симпато-адреналовая система и гипоталамо-гипофизарно-надпочечниковая система

Гипоталамо-гипофизарно- надпочечниковая система

Гипоталамо-гипофизарно-надпоче чниковая система играет важную роль в поддержании гомеостаза организма. Она контролирует синтез глюкокортикостероидов. Эти вещества необходимы в организме для регуляции белкового и минерального обмена, повышения свертываемости крови, стимуляции синтеза углеводов

Регуляция ЦНС

    • Регулирующее влияние ЦНС на деятельность эндокринных желез осуществляет ся через гипоталамус. Гипоталамус получает по афферентным путям мозга сигнал ы из внешней и внутренней среды. Нейросекреторные клетки гипоталамуса трансформируют афферентные нервные стимулы в гуморальные факторы, продуцируя рилизинг-гормоны. Рилизинг-гормоны избирательно регулируют функции клеток аденогипофиза.
    • В аденогипофизе образуются адренокортикотропный гормон (АКТГ), или кортикотропин, оказывает стимулирующее действие на кору надпочечников. В большей степени его влияние выражено на пучковую зону, что приводит к увеличению образования глюкокортикоидов, в меньшей - на клубочковую и сетчатую зоны, поэтому на продукцию минералокортикоидов и половых гормонов он не оказывает значительного воздействия.

Аденогипофиз

    • . Ключевым органом в регуляции с интеза глюкокортикоидов является гипоталамус, который реагирует на два стимула: уровень гидрокортизона в плазме крови и стресс. При низком уровне глюкокортикоидов крови или стрессовом воздействии (травма, инфекция, физическое напряжение и другие) гипоталамус вырабатывает кортикотропин-рилизинг-фактор (кортиколиберин), который стимулирует выброс адренокортикотропный гормон (АКТГ) из гипофиза. Под действием АКТГ в надпочечниках синтезируются глюкокортикоиды и минералокортикоиды. При избытке глюкокортикоидов в крови гипоталамус прекращает продуцировать кортикотропин-рилизинг-фактор. Таким образом, гипоталамо-гипофизарно-надпоче чниковая система функционирует по механизму отрицательной обратной связи.
    • Выход глюкокортикоидов из надпочечников в кровь в течение суток происходит не равномерно, а в виде 8-12 импульсов, которые подчиняются циркадному ритму. Особенностью циркадного ритма глюкокортикоидов является то, что максимальная секреция гидрокортизона происходит в ранние утренние часы (6-8 часов) с резким ее снижением в вечерние и ночные часы.

Выход глюкокортикоидов

После прохождения через мембрану клетки глюкокортикоиды в цитоплазме связываются со специфическим стероидным рецептором. Активированный комплекс "глюкокортикоид-рецептор" проникает в ядро клетки, соединяется с ДНК и стимулирует образование информационной РНК. В результате трансляции РНК на рибосомах синтезируются различные регуляторные белки. Одним из важнейших является липокортин, который ингибирует фермент фосфолипазу-А2 и, тем самым, подавляет синтез простагландинов и лейкотриенов, играющих ключевую роль в развитии воспалительной реакции.

Действие глюкокортикоидов

    • Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процесс образования глюкозы из белков, повышают отложение гликогена в печени, по своему действию являются антагонистами инсулина.
    • Глюкокортикоиды оказывают катаболическое влияние на белковый обмен, вызывают распад тканевого белка и задерживают включение аминокислот в белки.
    • Гормоны обладают противовоспалительным действием, что обусловлено снижением проницаемости стенок сосуда при низкой активности фермента гиалуронидазы. Уменьшение воспаления обусловлено торможением освобождения арахидоновой кислоты из фосфолипидов. Это ведет к ограничению синтеза простагландинов, которые стимулируют воспалительный процесс.
    • Глюкокортикоиды оказывают влияние на выработку защитных антител: гидрокортизон подавляет синтез антител, тормозит реакцию взаимодействия антитела с антигеном

Физиологическое значение глюкокортикоидов

    • Глюкокортикоиды оказывают выраженное влияние на кроветворные органы:
    • 1) увеличивают количество эритроцитов за счет стимуляции красного костного мозга;
    • 2) приводят к обратному развитию вилочковой железы и лимфоидной ткани, что сопровождается уменьшением количества лимфоцитов.
    • Выделение из организма осуществляется двумя путями:
    • 1) 75–90 % поступивших гормонов в кровь удаляется с мочой;
    • 2) 10–25 % удаляется с калом и желчью.

Удаление глюкокортикоидов

    • Болезнь Иценко-Кушинга - тяжелое нейроэндокринное заболевание, в основе которого лежит нарушение регуляторных механизмов, контролирующих гипоталамо-гипофизарно-надпоче чниковую систему. Проявления болезни связаны в первую очередь с избыточным образованием гормонов надпочечников - кортикостероидов.
    • Это редкое заболевание в 3-8 раз чаще встречается у женщин в возрасте 25-40 лет.0Болезнь возникает вследствие нарушения гипоталамо-гипофизарно-надпоче чниковых взаимоотношений. Нарушается механизм «обратной связи» между этими органами.
    • В гипоталамус поступают нервные импульсы, которые заставляют его клетки производить слишком много веществ, активизирующих высвобождение адренокортикотропного гормона в гипофизе. В ответ на такую мощную стимуляцию гипофиз выбрасывает в кровь огромное количество этого самого адренокортикотропного гормона (АКТГ). Он, в свою очередь, влияет на надпочечники: заставляет их в избытке вырабатывать свои гормоны - кортикостероиды. Избыток кортикостероидов нарушает все обменные процессы в организме.
    • Как правило, при болезни Иценко-Кушинга гипофиз увеличен в размерах (опухоль, или аденома, гипофиза). По мере развития заболевания увеличиваются и надпочечники.

Нарушение гипоталамо-гипофезарно- надпочечниковой системы

    • Ожирение: жир откладывается на плечах, животе, лице, молочных железах и спине. Несмотря на тучное тело, руки и ноги у больных тонкие. Лицо становится лунообразным, круглым, щеки красными.
    • Розово-пурпурные или багровые полосы (стрии) на коже.
    • Избыточный рост волос на теле (у женщин растут усы и борода на лице).
    • У женщин - нарушение менструального цикла и бесплодие, у мужчин - снижение сексуального влечения и потенции.
    • Мышечная слабость.
    • Ломкость костей (развивается остеопороз), вплоть до патологических переломов позвоночника, ребер.
    • Повышается артериальное давление.
    • Нарушение чувствительности к инсулину и развитие сахарного диабета.
    • Снижение иммунитета.
    • Возможно развитие мочекаменной болезни.
    • Иногда возникают нарушение сна, эйфория, депрессия.
    • Снижение иммунитета. Проявляется образованием трофических язв, гнойничковых поражений кожи, хронического пиелонефрита, сепсиса и т.д.

Основные признаки заболевания

Болезнь Иценко-Кушинга

    • это эндокринное заболевание, при котором по разным причинам нарушается синтез гормонов надпочечников, в том числе кортизола. Болезнь названа в честь англий ского врача Томаса Аддисона, которого называют отцом эндокринологии. Вторичная недостаточность коры надпочечников возникает из-за недостаточной выработки гипофизом адренокортикотропного гормона (АКТГ). Первичная недостаточность коры надпочечников проявляется гиперпигментацией кожи, из-за чего болезнь Аддисона часто называют «бронзовой болезнью»; при вторичной недостаточности бронзовая окраска кожи отсутствует. Заболевание может возникать также из-за генетических факторов, длительного приёма глюкокортикостероидов. Травмы и операции тоже могут спровоцировать заболевание.

Болезнь Аддисона

Клиническая картина. Симптомы.

    • Болезнь Аддисона обычно развивается медленно, в течение нескольких месяцев или лет, и симптомы её могут оставаться незамеченными или не проявляться до тех пор, пока не случится какой-либо стресс или заболевание, резко повышающее потребность организма в глюкокортикоидах.
    • Гипоталамо-гипофизарно-надпоче чниковая система - один из важнейших организаторов реализации общего адаптационного синдрома в организме

В качестве примера того, насколько тесно связаны в организме млекопитающих нервный и гуморальный способы регуляции можно рассмотреть нейроэндокринный комплекс, называемый гипоталамо-гипофизарно-надпочечниковой системой. Он представляет собой объединение структур гипофиза, гипоталамуса и надпочечников, выполняющее функции как нервной системы, так и эндокринной.

Гипоталамо-гипофизарно-надпочечниковая система играет важную роль в поддержании гомеостаза организма, эндокринных регуляций. Она контролирует синтез глюкокортикостероидов. Эти вещества необходимы в организме для регуляции белкового и минерального обмена, повышения свертываемости крови, стимуляции синтеза углеводов и др. Для оценки качества функционирования этой системы необходимо сдать анализы крови из вены.

ГГНС представляет собой нейроэндокринный механизм, посредством которого эмоциональный, нейрогенный и другие виды стресса, воздействуя на нервную систему, вызывают реакцию гипофизарно-адреналовой системы. Эту реакцию обусловливают многочисленные изменения во внешней среде, которые ведут к повышению биосинтеза и секреции гормонов коры надпочечников. Вызванные этими изменениями афферентные импульсы стимулируют выброс АКТГ в кровь в количестве, достаточно большом, чтобы удовлетворить повышенную потребность организма в гормонах коры надпочечников. Расценил эту реакцию, как одно из звеньев «общего адаптационного синдрома», при котором гипофизарно-адреналовая система выступает в качестве механизма, обеспечивающего поддержание гомеостаза в условиях стресса. Исследователи этой проблемы, описали относительно общие черты для различных форм стресса и сформулировал положение, согласно которому истощение или длительная гиперфункция системы гипофиз -- кора надпочечников играет существенную роль в патогенезе таких болезней, как гипертоническая болезнь, артрит, пептическая язва, диабет и т. п., которые называют болезнями адаптации.

Функция глюкокортикоидов: обеспечение устойчивости к стрессу, включая травмы, инфекции, голодание и пр. (противовоспалительное действие, стимуляция глюконеогенеза).Функция минералокортикоидов: поддержание баланса электролитов жидкостей организма, увеличивают реабсорбцию хлора, калия и бикарбонатов.

Принцип работы системы

Хотя гипофизарно-надпочечниковая реакция на внешние воздействия и является весьма важным механизмом в поддержании целостности организма, однако в этом процессе участвуют и другие эндокринные и нервные механизмы, которые в ряде случаев объясняют патогенез вышеупомянутых болезней лучше, чем нарушение адаптационных свойств гипофизарно-адреналовой системы. При длительном введении больших доз глюкокортикоидов наступает, как можно предвидеть, гипоплазия пучковой зоны. Полной атрофии этой ткани не происходит, и она сохраняет способность реагировать на стимуляцию кортикотропином. Гипофиз (или, возможно, гипоталамус) больше не реагирует на снижение уровня кортизола в крови. Таким образом, при прекращении соответствующей терапии организм оказывается неспособным адекватно реагировать на стресс и в случае воздействия стрессорных факторов может развиться острая недостаточность надпочечников.

Гипоталамус, передняя доля гипофиза и кора надпочечников функционально объединены в гипоталамо-гипофизарно-надпочечниковую систему.

Надпочечник состоит из коры и мозговой части, выполняющих различимо функции. Гистологически в коре надпочечников взрослого человека различают три слоя. Периферическую зону называют клубочковой, за ней идёт пучковая (наиболее широкая средняя зона коры надпочечника) и сетчатая. Клубочковая зона секретирует только альдостерон. Два других слоя - пучковая и сетчатая зоны - образуют функциональный комплекс, секретирующий основную массу гормонов коры надпочечников (ГК и андрогены).

В пучковой зоне коры надпочечников прегненолон, синтезированный из ХС, преобразуется в 17α-оксипрегненолон, служащий предшественником кортизола, андрогенов и эстрогенов. В процессе синтеза из 17α-оксипрегненолона образуется 17α-оксипрогестерон, который последовательно гидрокси лируется в кортизол.

К продуктам секреции пучковой и сетчатой зон относятся стероиды, обладающие андрогенной активностью: дегидроэпиандростерон (ДГЭА), деги дроэпиандростерона сульфат (ДГЭАС), андростендион (и его 11β-аналог) и тестостерон. Все они образуются из 17α-оксипрегненолона.

Продукция надпочечниковых ГК и андрогенов регулируется гипоталамо-гипоф изарной системой. В гипоталамусе вырабатывается КРГ, попадающий через портальные сосуды в переднюю долю гипофиза, где он стимулирует продукцию АКТГ. АКТГ вызывает в корковом слое надпочечников быстрые и резкие сдвиги. В коре надпочечников АКТГ повышает скорость отщепления боковой цепи от ХС - реакции, лимитирующей скорость стероидогенеза в надпочечниках. Указанные гормоны (КРГАКТГсвобод ный кортизол) связаны между собой классической петлёй отрицательной обратной связи - повышение концентрации свободного кортизола в крови тормозит секрецию КРГ, и наоборот, его снижение стимулирует высво бождение КРГ гипоталамусом.

Заболевания коры надпочечников могут протекать или с гиперфункцией (гиперкортицизм), или с гипофункцией (гипокортицизм). Патология, при которой определяется повышение секреции одних гормонов и снижение других, относится к группе дисфункций коры надпочечников.

При заболеваниях коры надпочечников выделяют следующие синдромы.

■Гиперкортицизм:

болезнь Иценко-Кушинга (гипоталамо-гипофизарное заболевание);

синдром Иценко-Кушинга - кортикостерома (доброкачественная или злокачественная) или двусторонняя мелкоузелковая дисплазия коры надпочечников;

АКТГ-эктопированный синдром: опухоли бронхов, поджелудочной железы, тимуса, печени, яичников, секретирующие АКТГ или КРГ;

синдром феминизации и вирилизации (избыток эстрогенов и/или андрогенов).

■Гипокортицизм:

первичный;

вторичный;

третичный.

■Дисфункция коры надпочечников:

□адреногенитальный синдром (АГС).

Для исследования функционального состояния гипоталамо-гипофизарно- надпочечниковой системы определяют концентрацию АКТГ и кортизола в крови, свободного кортизола в моче, ДГЭАС в крови, 17-оксикортикостероидов (17-ОКС) и 17-кетостероидов (17-КС) в моче, 17α -гидроксипрогестерона (17-ГПГ) в крови.

Адренокортикотропный гормон в сыворотке крови

Референтные величины концентрации АКТГ в сыворотке крови: в 8.00 менее 26 пмоль/л, в 22.00 - менее 19 пмоль/л.

АКТГ - пептид, состоящий из 39 аминокислотных остатков с молекулярной массой приблизительно 4500. Секреция АКТГ в кровь подвержена суточным ритмам, концентрация максимальна в 6 ч утра, а минимальна - приблизительно в 22 ч. Сильный стимулятор АКТГ - стресс. Время полужизни в крови составляет 3-8 мин.

Болезнь Иценко-Кушинга - одно из наиболее тяжелых и сложных ней роэндокринных заболеваний гипоталамо-гипофизарного генеза с последующим вовлечением надпочечников и формирования синдрома тотального гиперкортицизма и связанного с ним нарушения всех видов обмена. Патогенетической основой болезни Иценко-Кушинга является нарушение обратной связи в функциональной системе гипоталамус->гипофиз->кора надпочечников, характеризующееся постоянно повышенной активностью гипофиза и гиперплазией кортикотрофов или, значительно чаще, разви­тием АКТГ-продуцирующих аденом гипофиза и гиперплазией коры обоих надпочечников. В большинстве случаев болезни Иценко-Кушинга обна­руживают аденомы гипофиза (макроаденомы- у 5%, микроаденомы - у 80% больных).

Для болезни Иценко-Кушинга характерно одновременное увеличение содержания в крови АКТГ и кортизола, а также повышенная суточная секреция с мочой свободного кортизола и 17-ОКС. Определение АКТГ в крови необходимо для дифференциальной диагностики болезни и различных форм синдрома Иценко-Кушинга.

Таблица №1 «Дифференциальная диагностика гиперкортицизма»

Показатели

Болезнь

Иценко-Кушинга

Синдром

Иценко-Кушинга

Концентрация калия в плазме

крови

Норма или незначительно

понижена

Норма или незначительно

понижена

Резко понижена

Концентрация АКТГ в плазме

крови

Повышена

в 1,5-2 раза

Норма или незначительно

понижена

Повышена

в 1,5-10 раз

Концентрация кортизола

к плазме крови

Повышена

в 1,5-3 раза

Повышена

в 2-4 раза

Повышена

в 3-5 раз

Концентрация 17-ОКС

в моче

Повышена

в 1,5-3 раза

Повышена

в 2-3 раза

Повышена

в 2-5 раз

Концентрация свободного кортизола в моче

Повышена

в 1,5-3 раза

Повышена

в 2-4 раза

Повышена

в 2-5 раз

Реакция на дексаметазон

(малый тест)

Положительная

Отрицательная

Как правило, отрицательная

Секреция АКТГ зна­чительно снижена у больных с кортикостеромой и раком коры надпочеч­ников (синдром Иценко-Кушинга). У лиц с болезнью Иценко-Кушинга и синдромом эктопического АКТГ (патологическая секреция АКТГ опухолью негипофизарного происхождения, чаше всего раком бронхов или тимомой ) концентрация АКТГ в крови повышена. Для дифференциальной диагностики между двумя последними заболеваниями применяют пробу с КРГ. При болезни Иценко-Кушинга секреция АКТГ после введения КРГ зна­чительно возрастает. АКТГ-продуцирующие клетки опухолей негипофизарной локализации не имеют рецепторов КРГ, поэтому концентрация АКТГ при этой пробе существенно не изменяется.

Синдром эктопической секреции АКТГ чаще всего развивается при раке легких, карциноиде и раке бронхов, злокачественных тимомах, первичных карциноидах тимуса и других опухолях средостения. Реже синдром сопро­вождает опухоли околоушных желёз, мочевого и желчного пузыря, пище­вода, желудка, толстой кишки, меланому, лимфосаркому. Эктопическая продукция АКТГ обнаруживается и при опухолях эндокринных желез: раке клеток островков Лангерганса, медуллярном раке щитовидной железы, феохромоцитоме, нейробластоме, раке яичников, яичек, предстательной железы. Вследствие длительной повышенной концентрации АКТГ в крови развивает­ ся гиперплазия коры надпочечников и повышается секреция кортизола.

Концентрация АКТГ в крови может составлять от 22 до 220 пмоль/м и более. В диагностическом плане при синдроме эктопической продукции АКТГ клинически значимыми считают концентрации АКТГ в крови выше 44 пмоль/л.

Лучший метод для разграничения гипофизарного и эктопического источников АКТГ - одновременное двустороннее исследование крови из нижних пещеристых синусов на содержание АКТГ. Если концентрация АКТГ в пещеристых синусах значительно выше, чем в периферической крови, то источником гиперсекреции АКТГ является гипофиз. Если градиент между содержанием АКТГ в пещеристых синусах и периферической крови не прослеживается, источником повышенного образования гормона, скорее всего, является карциноидная опухоль другой локализации.

Первичная недостаточность коры надпочечников (болезнь Аддисона). При первичной надпочечниковой недостаточности, в результате деструктивных процессов в коре надпочечников снижается продукция ГК, минералокортикоидов и андрогенов, что приводит к нарушению всех видов обмена в организме.

Наиболее частые лабораторные признаки первичной надпочечниковой недостаточности - гипонатриемия и гиперкалиемия.

Припервичнойнедостаточностикорынадпочечниковконцентрации АКТГ в крови значительно повышена - в 2-3 раза и более. Нарушается ритм секреции - содержание АКТГ в крови как утром, так и вечером повышено. При вторичной надпочечниковой недостаточности концентрации АКТГ в крови снижается. Для оценки остаточного резерва АКТГ проводят тест с КРГ. При недостаточности гипофиза реакция на КРГ отсутствует. При локализации процесса в гипоталамусе (отсутствие КРГ) тест может быть положительным, но ответ АКТГ и кортизола на введение КРГ замедлен. Для первичной надпочечниковой недостаточности характерно сниже­ние концентрации альдостерона в крови.

Вторичная и третичная надпочечниковая недостаточность возникают в ре­ зультате поражения головного мозга с последующим снижением продукции АКТГ и развитием вторичной гипоплазии или атрофии коры надпочечников. Обычно вторичная надпочечниковая недостаточность развивается одновременно с пангипопитуитаризмом, но иногда возможна и изолированная недостаточность АКТГ врожденного или аутоиммунного характера. Наиболее частая причина третичной недостаточности надпочечником длительное применение ГК в высоких дозах (лечение воспалительных или ревматических заболеваний). Подавление секреции КРГ с последующим развитием недостаточности надпочечников - парадоксальное последствие успешного лечения синдрома Иценко-Кушинга.

Синдром Нельсона развивается после тотального удаления надпочечников при болезни Иценко-Кушинга; характеризуется хронической надпочечниковойнедостаточностью,гиперпигментациейкожныхпокровом, слизистых оболочек и наличием опухоли гипофиза. Для синдрома Нельсона характерно повышение концентрации АКТГ в крови. При проведении дифференциальной диагностики между синдромом Нельсона и эктопической секрецией АКТГ необходимо проводить одновременное двустороннее исследование крови из нижних пещеристых синусов на содержание АКТГ, что позволяет уточнить локализацию процесса.

После хирургического лечения (транссфеноидальной операции с удале­нием кортикотропиномы) определение концентрации АКТГ в плазме кро­ви позволяет оценить радикальность операции.

У беременных концентрация АКТГ в крови может быть повышена.

Таблица 2 «Основные заболевания и состояния, при которых изменяется концентрация АКТГ в сыворотке крови»

Увеличение концентрации

Снижение концентрации

Болезнь Иценко-Кушинга

Паранеопластический синдром

Болезнь Адиссона

Посттравматические и постоперационн ые состояния

Синдром Нельсона

Надпочечниковый вирилизм

Применение АКТГ, инсулина,

вазопрессина

Эктопическая продукция АКТГ

Гипофункция коры надпочечников

Опухоль коры надпочечников

Опухоль, выделяющая кортизол

Применение ГК

Возбуждение участка коры головного мозга под действием стрессора вызывает стимуляцию гипофизотропной зоны медиальной зоны гипоталамуса (эндокринные центры) и высвобождение гипоталамических рилизинг-факторов, которые оказывают стимулирующее действие на аденогипофиз. Результатом этого является образование и выделение тройных гормонов гипофиза, одним из которых является адренокортикотроп-ный гормон (АКТГ). Органом-мишенью этого гормона является корковое вещество над­почечников, в пучковой зоне которого вырабатываются глюкокортикоиды, а в сетчатой зоне- андрогены. Андрогецы вызывают стимуляцию синтеза белка, увеличение полового члена и яичек, ответственны за половое поведение и агрессивность.

Другим тройным гормоном гипофиза является соматотропный гормон (СТГ) к эффектам которого относятся: стимуляция синтеза и секреции инсулиноподобного факто­ра роста в печени и других органах и тканях, стимуляция липолиза в жировой ткани, сти­муляция продукции глюкозы в печени.

Третьим тропным гормоном гипофиза является тиреотропный гормон (ТТГ), ко­торый стимулирует синтез тиреоидных гормонов в щитовидной железе. Тиреоидные гормоны ответственны за стимуляцию синтеза белка во всех клетках тела, повышение ак­тивности ферментов, участвующих в расщеплении углеводов, разобщении окисления и фосфорилирования (увеличения теплопродукции).


Эффекты глюкокортикоидов:

Индукция синтеза ферментов - глюкокортйкоиды (ГК) проникают через мембрану в
цитоплазму клеток, где связываются в комплекс с рецептором (К). Комплекс ГК-К.
проникает в ядро, где увеличивает синтез РНК-полимеразы, что ускоряет транскрип­
цию мРНК, способствуя образованию белков-ферментов глюконеогенеза.

Мобилизация белковых ресурсов клетки - глюкокортйкоиды освобождают свободные
аминокислоты из мышечной, лимфоидной и соединительной ткани.

Пермидсивное (разрешающее) действие - особенно четко проявляется в отношении
катехоламинов. Катаболический эффект адреналина обусловлен активацией аденилат-
циклазы с образованием цАМФ, который затем активирует протеинкиназы. Распад
цАМФ вызывает фосфодиэстераза, которую ингибируют глюкокортйкоиды, тем са­
мым, усиливая эффекты катехоламинов. Кроме того, глюкокортйкоиды блокируют
ферменты: моноаминоксидазу (МАО), содержащуюся в адренергических окончаниях,
и кагпехол-О-метжгпрансферазу (КОМТ), локализующуюся в цитоплазме эффектор-
ных клеток. Эти ферменты вызывают инактивацию катехоламинов.

Увеличение концентрации глюкозы в крови обусловлено усилением глюконеогенеза, торможением синтеза белка, пермиссивным действием глюкокортикоидов на эффект (катаболический) адреналина, снижением проницаемости клеточных мембран для глю­козы.


Мобилизация энергетического ресурса клеток реализуется за счет активации глюко-генеза, торможения синтеза белка, пермиссивного действия глюкокортикоидов по от­ношению к катехоламинам.

Тормозится воспалительние - глюкокортйкоиды стабилизируют мембраны лизосом и блокируют синтез фосфолипаз, препятствуя тем самым выбросу альтерирующих про-теолитических ферментов, способствуют нормализации повышенной проницаемости сосудов, что уменьшает выраженность экссудации, снижают выделение и синтез ме­диаторов воспаления, угнетают фагоцитоз.

Снижение иммунитета происходит вследствие торможения синтеза антител (распад белков, репрессия транскрипции), угнетения фагоцитоза.

Стадии стресса или общего адаптационного синдрома:

1. Стадия тревоги (аларм-реакция) - мобилизация организма, усиление дыхания, сер­дечной деятельности, { С С, гипертрофия мозгового и коркового вещества надпочечни­ков, инволюция тимуса и лимфоидной ткани. Активация защитных механизмов и угне­тение функций не связанных с непосредственным поддержанием жизнедеятельности. Описанные изменения в- основном обусловлены активацией ЦНС и симптомо-адреновой системы.

2. Стадия резистентности - увеличение резистентности организма к стрессору. Фор­мирование этой стадии проходит преимущественно под влиянием гипоталамо-гипофизарно-надпочечниковой системы. Эндокринные оси: адренокортикальная; сома-тотропная и тиреоидная.

3. Стадия истощения - снижение резистентности, болезнь и смерть.

Стресе-лимитирующие системы (системы, ограничивающие стресс-реакцию и защищающие клетки от повреждения) могут быть классифицированы на центральные (ГАМК-эргическая - торможение в ЦНС; опиоидная (эндорфины, энкефалины) - модули­рующая функция; серотонинэргическая) и периферические {цитопротективные про-стагландины, антиоксидантные системы (супероксиддисмутаза, каталаза, глутатионпе-роксидаза, глутатион, токоферол и др.)).

V. Дистресс Болезни адаптации. Ятоогенные осложнения вследствие использования аналогов стресс-реализующих гормонов.

Любой стресс заканчивается в виде двух явлений:

Эустресс - благоприятный исход стресса. В результате стрессовой реакции повы­шается функциональный резерв организма, что в итоге приводит к адаптации организма к стрессовому фактору.

Дистресс - неблагоприятный исход стресса, характеризующийся истощением за­щитных сил организма. Данная фаза проявляется в виде симптомов декомпенсации функ­ции органов, нагрузка на которые была наиболее высока. Болезни адаптации возникают вследствие чрезмерной активации стресс-лимитируюх систем либо недостаточноти стресс-лимитирующих механизмов. Как проявления дисстресса могут рассматриваться язвенная болезнь желудка и двенадцатиперстной кишки, ишемическая болезнь сердца, ги­пертоническая болезнь, мозговой инсульт, кахексия, сахарный диабет, иммунодефициты, опухоли, расстройства менструального цикла у женщин, импотенция у мужчин, гиперти-реозидр.

Реактивность. Резистентность. Адаптация. Болезни адаптации.

I. Понятие и виды реактивности и резистентности.

Реактивность - свойство организма как целого отвечать изменениями жизнедеятельности на воздействие окружающей среды. Реактивность - один из важнейших факторов патогенеза болезней.

Течение болезни может быть :

· Гиперэргическое (гиперэргия ) - быстрое, яркое, выраженное.

· Гипоэргическое (гипоэргия ) - затяжное, вялое со стертыми симптомами, низким уровнем фагоцитоза и образования антител.

  • Дисэргическое (дизэргия ) - извращенная реактивность.

Виды реактивности:

1. Биологическая (видовая, первичная) – изменения жизнедеятельности, возникающие под влиянием обычных для каждого животного воздействий окружающей среды. Например, невосприимчивость человека к чумке собак, к гонорее и сифилису крупного рогатого скота и т. д. Зимняя спячка - видовой вариант изменения реактивности (суслики не болеют в период спячки чумой и туберкулезом).

2. Групповая – формируется у групп индивидуумов, находящихся под влиянием общего фактора чаще всего внутренней среды. Например, чувствительность к психо-эмоциональному стрессу у гипер- и астеников. Реактивность мужчин и женщин. Возрастные изменения реактивности. Группы крови.

3. Индивидуальная – формируется в зависимости от совокупности конкретных факторов, в которых обитает и формируется организм (наследственность, возраст, пол, питание, температура, содержание кислорода).

  • физиологическая - адекватная реакция в физиологических условиях без нарушения гомеостаза. Иммунитет (специфическая), ФН (неспецифическая).
  • патологическая - при воздействии болезнетворных факторов или неадекватных реакций на физиологические воздействия. Аллергия, иммунодефицитные состояния (специфическая), шок, наркоз (неспецифическая).

· специфическая – характерна для одного конкретного фактора (иммунная, реакция зрачка на свет).

· неспецифическая - характерна для различных факторов (стресс-реакция, парабиоз, фагоцитоз, биологические барьеры).

Группы препаратов, влияющих на реактивность

1. Повышающие и понижающие реактивность ЦНС при неврозах (седативные или психостимуляторы).

2. Изменяющие реактивность водителей сердечного ритма и проводящей системы сердца к воздействию симпатической и парасимпатической нервной системы при аритмиях.

3. Изменяющие реактивность к нервным влияниям (путем блокады или стимуляции рецепторов препаратами синантотропного действия):

· скелетной мускулатуры (при повышении или понижении тонуса мышц),

· сосудистой мускулатуры (при гипо-и гипертонических состояниях),

· кишечной мускулатуры (при спазмах и атониях кишечника).

Резистентность (устойчивость) – это свойство организма противостоять различным воздействиям или невосприимчивость к воздействиям повреждающих факторов внешней среды.

Формы резистентности

· Абсолютная – реализуется всегда. · Относительная – реализуется при определенных условиях.
· Пассивная , связанная с анатомо-физиологическими особенностями организма. · Активная , связанная с одной стороны с устойчивостью биологической системы, с другой - способностью перестраиваться при изменении внешних условий (лабильностью) и которая осуществляется благодаря механизмам активной адаптации.
· Первичная или наследственная форма. · Вторичная , приобретенная или измененная форма.
· Специфическая - устойчивость к действию какого-то одного агента. · Неспецифическая - устойчивость к действию многих факторов.
· Общая - устойчивость всего организма. · Местная - устойчивость отдельных участков органов или систем тела.

Резистентность организма фармакологически в большинстве случаев стремятся повысить . Например, стимуляторы иммунной системы повышают устойчивость, сопротивляемость организма к микроорганизмам и опухолям.

Реактивность и резистентность организма не всегда изменяются однонаправлено . В некоторых случаях, повышенная иммунная реактивность организма может спровоцировать так называемые аллергические заболевания, вызывающие или повреждение структур организма (аутоиммунные заболевания), или иногда - даже летальный исход (анафилактический шок). В подобных случаях, требуется фармакологическая коррекция данного вида реактивности препаратами, угнетающими иммунный ответ.

II. Специфическая и неспецифическая адаптация. Кратковременная и долговременная адаптация.

Адаптация - приспособление организма к условиям существования, обеспечивающее повышение устойчивости организма к условиям среды (резистентности).

  • Специфическая адаптация – активация функциональной системы, ответственной за повышение устойчивости к конкретному фактору (физической нагрузке, холоду, гипоксии).
  • Неспецифическая адаптация – стандартная активация стресс-реализующей системы при действии нового или сильного раздражителя.

Адаптационные реакции проходят2 этапа :

1. Срочный этап – возникает непосредственно после начала действия раздражителя и, может реализоваться лишь на основе ранее сформировавшихся физиологических механизмов (увеличение ЧСС, ЧД, бегство животного от опасности). При этом деятельность организма протекает на пределе его возможностей, но не всегда обеспечивает необходимый эффект.

  1. Долговременный этап – возникает постепенно, в результате длительного и многократного действия на организм факторов среды, т. е. на основе многократного повторения срочной адаптации.

В результате усиления физиологической функции клеток, специфически ответственных за адаптацию, происходит активация генетического аппарата: увеличивается синтез нуклеиновых кислот и белков, образующие важные структуры клетки. Так формируется системный структурный след – основа перехода ненадежной срочной адаптации в устойчивую долговременную.

III. Механизмы адаптации организма к ксенобиотикам. Феномен привыкания к лекарственным веществам.

Большинство фармакотерапевтических средств относятся к ксенобиотикам , то есть к веществам, чужеродным организму.

Защищаясь от них, организм включает:

1. Механизмы их инактивации:

· повышенное разрушение в печени и других клетках (защитные синтезы),

· микросомальное окисление.

2. Механизмы их выведения путем:

· усиления канальцевой секреции в почках,

· снижения всасывания в кишечнике,

· реабсорбции в почечных канальцах.

Эффекты препаратов на организм при этом снижаются, требуется возрастающая доза. Возникает феномен привыкания к лекарственному средству.

IV. Феномен пристрастия к лекарственным веществам. Патофизиологические механизмы лекарственной зависимости.

Иногда лекарственное средство, вытесняя из метаболизма какое-то вещество, на практике чаще всего - нейромедиатор, полностью заменяет его в эффектах последнего. Синтез медиатора по механизму обратной связи прекращается, восстановить его организму порой трудно, поэтому после прекращения применения лекарства в этом случае возникает ощущение нехватки, "абстиненции". Этот феномен особой реактивности организма на фармакотерапию получил название лекарственной зависимости или пристрастия , лежащий в основе всех наркоманий (никотин, кокаин, опиаты). Лекарственная зависимость также относится к побочным эффектам лекарств, поскольку иногда является тяжелым ятрогенным заболеванием.

V. Общий адаптационный синдром. Схема развития симпато-адреналовой реакции при стрессе с выделением структур нервной и эндокринной систем, принимающих в ней участие, названия рецепторов и медиаторов. Сходные реакции, возникающие при курении или назначении Н-холиномиметиков. Схема развития гипоталамо-гипофизарно-адреналовой реакции при стрессе. Гормоны, выделяющиеся в результате этой реакции, их положительные эффекты. Стресс-реализующие и стресс-лимитирующие системы. Возможности фармакологической коррекции стресса. Адаптогены.

Стресс - неспецифический ответ организма на любое предъявляемое ему повышенное требование, адаптация к возникшей трудности независимо от ее характера.

Впервые стресс описал в 1936 году канадский физиолог Ганс Селье как общий адаптационный синдром .

Стресс возникает при воздействии сильного раздражителя . Сила раздражителя такова, что существующие защитные барьеры не могут прекратить эффекты, вызываемые этим раздражителем. В результате организм включает цепь реакций, которые и стали объединять под названием «стресс».

Таким образом, стресс играет защитную роль , направленную на нейтрализацию последствий, вызванных воздействием сильных раздражителей. Стресс-реакция присуща всем живым организмам, однако наибольшего совершенства она достигла у человека, поскольку здесь имеет значение социальный фактор.

Г. Селье «От мечты к открытию»: «… Я не мог понять, почему с самого зарождения медицины врачи всегда старались сосредоточить все свои усилия на распознавании индивидуальных заболеваний и на открытии специфических лекарств от них, не уделяя никакого внимания значительно более очевидному "синдрому недомогания" как таковому. Я знал, что синдромом называется "группа признаков и симптомов, в своей совокупности характеризующих заболевание". Несомненно, у только что виденных нами больных присутствовал синдром, но он скорее напоминал синдром болезни как таковой, а не какого-то определенного заболевания. А нельзя ли проанализировать механизм этого общего "синдрома недомогания" и, быть может, попытаться найти лекарства против неспецифического фактора болезни? Впрочем, выразить все это на точном языке экспериментально обоснованного научного описания я сумел лишь спустя десять лет.

В то время я работал в отделении биохимии Университета Мак Гилл, пытаясь обнаружить новый гормон в экстрактах яичников крупного рогатого скота. Все экстракты, независимо от того, как они готовились, вызывали один и тот же синдром, характеризовавшийся увеличением коры надпочечников …, желудочно-кишечными язвами, уменьшением тимуса и лимфатических узлов . Хотя на первых порах я приписывал эти изменения некоему новому гормону яичников в моем экстракте, вскоре обнаружилось, что экстракты других органов - и даже любые токсические вещества - также вызывают аналогичные изменения. И лишь тогда я внезапно вспомнил свое студенческое впечатление от "синдрома недомогания" как такового. Меня осенило: то, что я вызывал своими неочищенными экстрактами и токсичными препаратами, было экспериментальным воспроизведением этого состояния. Затем эта модель была применена при анализе синдрома стресса, а увеличение надпочечников, желудочно-кишечные язвы и тимико-лимфатическая дегенерация рассматривались в качестве объективных показателей стресса. Так простая догадка о наличии связи между почти забытой и сугубо предположительной клинической концепцией, родившейся в студенческие времена, с одной стороны, и воспроизводимыми и объективно, измеримыми изменениями в текущих экспериментах на животных, с другой, послужила основой для развития всей концепции стресса…»

Факторы, запускающие стресс-реакцию или «стрессоры» , могут быть разнообразными:

· нервное напряжение,

· телесные повреждения,

· инфекции,

· мышечная работа и т. д.

Стресс-реализующие системы - симпато-адреналовая система и гипоталамо-гипофизарно-надпочечниковая система.



Активация симпато-адреналовой системы

Воздействие стрессора на организм вызывает формирование очага возбуждения в коре больших полушарий головного мозга, импульсы из которого направляются в вегетативные (симпатические) центры гипоталамуса , а оттуда – в симпатические центры спинного мозга . Аксоны нейронов этих центров идут в составе симпатических волокон к клеткам мозгового вещества надпочечников , формируя на их поверхности холинэргические синапсы. Выход ацетилхолина в синаптическую щель и взаимодействие его с Н-холинорецепторами клеток мозгового вещества надпочечников стимулирует выброс ими адреналина. Курение вызывает повышение концентрации никотина в крови, никотин стимулирует Н-холинорецепторы клеток мозгового вещества надпочечников, что сопровождается выбросом адреналина.

Эффекты катехоламинов

· Усиление сердечной деятельности , опосредованнное возвуждением b-адренорецепторов сердца.

· Расширение сосудов сердца и мозга , опосредованнное возвуждением b-адренорецепторов.

· Выброс эритроцитов из депо – обусловлен сокращением капсулы селезенки, содержащей a-адренорецепторы.

· Лейкоцитоз – «встряхивание» маргинальных лейкоцитов.

· Сужение сосудов внутренних органов , опосредованнное возвуждением a-адренорецепторов.

· Расширение бронхов , опосредованнное возвуждением b-адренорецепторов бронхов.

· Угнетение перистальтики ЖКТ .

· Расширение зрачка .

· Уменьшение потоотделения .

· Катаболический эффект адреналина обусловлен активацией аденилатциклазы с образованием цАМФ, который активирует протеинкиназы. Активная форма одной из протеинкиназ способствует фосфорилированию (активации) триглицеридлипазы и расщеплению жиров . Образование активной формы другой протеинкиназы необходимо для активации киназы фосфорилазы b , которая катализирует превращение неактивной фосфорилазы b в активную фосфорилазу а . В присутствии последнего фермента происходит распад гликогена . Кроме этого при участии цАМФ активируется протеинкиназа, необходимая для фосфорилирования гликогенсинтетазы, то есть перевода ее в малоактивную или неактивную форму (торможение синтеза гликогена ). Таким образом, адреналин через активацию аденилатциклазы способствует распаду жиров, гликогена и торможению синтеза гликогена.

Активация гипоталамо-гипофизарно-надпочечниковой системы

Возбуждение участка коры головного мозга под действием стрессора вызывает стимуляцию гипофизотропной зоны медиальной зоны гипоталамуса (эндокринные центры) и высвобождение гипоталамических рилизинг-факторов , которые оказывают стимулирующее действие на аденогипофиз . Результатом этого является образование и выделение тропных гормонов гипофиза , одним из которых является адренокортикотропный гормон (АКТГ). Органом-мишенью этого гормона является корковое вещество надпочечников , в пучковой зоне которого вырабатываются глюкокортикоиды , а в сетчатой зоне – андрогены. Андрогены вызывают стимуляцию синтеза белка; увеличение полового члена и яичек; ответственны за половое поведение и агрессивность.

Другим тропным гормоном гипофиза является соматотропный гормон (СТГ)к эффектам которого относятся:

· стимуляция синтеза и секреции инсулиноподобного фактора роста в печени и др. органах и тканях,

· стимуляция липолиза в жировой ткани,

· стимуляция продукции глюкозы в печени.

Третьим тропным гормоном гипофиза является тиреотропный гормон (ТТГ), который стимулирует синтез тиреоидных гормонов в щитовидной железе . Тиреоидные гормоны ответственны за стимуляцию синтеза белка во всех клетках тела, повышение активности ферментов, участвующих в расщеплении углеводов, разобщении окисления и фосфорилирования (увеличения теплопродукции)