Метаболизм: как протекает метаболический процесс. Простым языком о том, что это такое - метаболизм

Что же такое метаболизм?

Никогда не задумывались над тем, почему одни люди едят все подряд (не забывая про булочки и кондитерские изделия), при этом, они выглядят так, будто не ели несколько дней, а другие, наоборот, постоянно считают калории, сидят на диетах, посещают фитнесс залы и все равно никак не могут справиться с лишними килограммами. Так в чем же секрет? Оказывается, все дело в метаболизме!

Так что же такое метаболизм? И почему люди, у которых скорость метаболических реакций высокая, никогда не страдают ожирением или избыточным весом? Говоря о метаболизме, важно отметить следующее, что это обмен веществ происходящие в организме и все химические изменения, начинающиеся с момента попадания питательных веществ в организм, до момента выведения их из организма во внешнюю среду. Метаболический процесс – это все протекающие реакции в организме, благодаря которым происходит построение элементов структурны тканей, клеток, а также все те процессы, благодаря которым организм получает так необходимую ему для нормального поддержания энергию.

Метаболизм значение играет огромное в нашей жизни, так как, благодаря всем этим реакциям и химическим изменениям, из продуктов питания мы получаем все самое необходимое: жиры, углеводы, белки, а также витамины, минералы, аминокислоты, полезную клетчатку, органические кислоты и т.д.

По своим свойствам метаболизм можно разделить на две основные части – анаболизм и катаболизм, то есть на процессы, способствующие созиданию всех необходимых органических веществ и к разрушающим процессам. Именно, анаболические процессы способствуют «превращению» простых молекул в более сложные. И все эти данные процессы связаны с энергетической затратой. Катаболические процессы, наоборот, высвобождают организм от конечных продуктов распада, таких как диоксид углерода, мочевина, вода и аммиак, что приводит к высвобождению от энергии, то есть можно грубо сказать, происходит метаболизм мочи.

Что такое клеточный метаболизм?

Что представляет собою клеточный метаболизм или метаболизм живой клетки? Общеизвестно, что каждая живая клетка нашего организма, это хорошо слаженная и организованная система. В клетке содержатся различные структуры, крупные макромолекулы, которые помогают ей распасться благодаря гидролизу, (то есть расщеплению клетки под воздействием воды) на мельчайшие компоненты.

Кроме этого, в клетках содержится большое количество калия и совсем немного натрия, несмотря на то, что в клеточной среде содержится очень много натрия, а калия, наоборот, значительно меньше. К тому же, мембрана клеточная устроена таким образом, что помогает проникновению как натрия, так и калия. К сожалению, различные структуры и ферменты способны разрушить эту налаженную структуру.

И сама по себе клетка далека от соотношения калия и натрия. Такая «гармония» достигается только после смерти человека в процессе смертного автолиза, то есть переваривания или разложения организма под воздействием собственных ферментов.

Для чего энергия клеткам?

В первую очередь, энергия клеткам просто необходима для того, чтобы поддержать работу системы, которая далека от равновесия. Поэтому, чтобы клетка находилась в нормальном для нее состоянии, (пусть даже далеком от равновесия) она, непременно, должна получать необходимую для нее энергию. И это правило является непременным условием, для нормального клеточного функционирования. Вместе с этим происходит и другая работа, направленная на взаимодействие со средою.

К примеру, если наблюдается сокращение в мышечных клетках, или в клетках почек и даже начала образовываться моча, или появились нервные импульсы в нервных клетках, а в клетках, отвечающих за желудочно-кишечный тракт, началось выделение ферментов пищеварительных, или началась секреция гормонов в клетках желез эндокринных? Или, к примеру, у клеток светляков началось свечения, а в клетках рыб, например, появились разряды электричества? Чтобы всего этого не было, для этого и нужна энергия.

Каковы источники энергии

В вышеприведенных примерах мы видем. Что клетка использует для своей работы энергию, полученную благодаря структуре аденозинтрифосфата или (АТФ). Благодаря ей клетка насыщена энергией, высвобождение которой может поступать между группами фосфатными и послужить дальнейшей работе. Но, в то же время, при простом гидролитическом разрыве связей фосфатных (АТФ), полученная энергия не станет доступной клетке, в этом случае, энергия будет расходована впустую в качестве тепла.

Данный процесс состоит из двух последующих друг за другом этапов. В каждом таком этапе участвует продукт промежуточный, который обозначили ХФ. В приведенных ниже уравнениях X и Y обозначают два абсолютно разных веществ органических, буква Ф означает фосфат, а аббревиатура АДФ – аденозиндифосфат.

Нормализация обмена веществ – этот термин сегодня прочно вошел в нашу жизнь, к тому же стал показателем нормального веса, так как нарушения обменных процессов в организме или метаболизма, очень часто связывают с увеличением массы тела, избыточным весом, ожирением или его недостаточность. Выявить скорость метаболических процессов в организме можно благодаря тесту на основой обмен.

Что такое основной обмен?! Это такой показатель интенсивности выработки организмом энергии. Данный тест проводится утром на голодный желудок, во время пассивности, то есть в состоянии покоя. Квалифицированный специалист измеряет (О2) поглощение кислорода, а также выделение организмом (СО2). При сопоставлении данных, выясняют насколько процентов организм сжигает поступающие питательные вещества.

Также на активность метаболических процессов влияние оказывает гормональная система, щитовидная и эндокринные железы, поэтому медики при выявлении лечении заболеваний связанных с обменом веществ, также стараются выявить и учесть уровень работы данных гормонов в крови и имеющиеся в наличии заболевания данных систем.

Основные методы исследования метаболических процессов

Изучая процессы метаболизма одного (любого) из питательных веществ наблюдаются все его изменения (происходившие с ним) от одной формы поступившей в организм, до конечного состояния, при котором, оно выводится из организма.

Методы исследования обмена веществ сегодня крайне разнообразны. К тому же, для этого используют целый ряд биохимических методов. Одним из методов исследования метаболизма является метод использования животных или органов.

Испытуемому животному вводят специальное вещество, а затем по его моче и экскрементах выявляют возможные продукты изменений (метаболиты) данного вещества. Наиболее точную информацию можно собрать, исследуя метаболические процессы определенного органа, к примеру, мозга, печени или сердца. Для этого данное вещество вводят в кровь, после чего, метаболиты помогают выявить его в крови, исходящей от данного органа.

Данная процедура очень сложна и сопряжена с риском, так как часто при таких методах исследованиях используют метод тоненьких отщипов или делают срезы данных органов. Такие срезы помещают в специальные инкубаторы, где их содержат при температуре (сходной к температуре тела) в специальных растворимых веществах с добавлением того вещества, чей метаболизм и изучается.

При таком методе исследования не повреждаются клетки, благодаря тому, что срезы настолько тонки, что вещество легко и свободно проникает в клетки, а затем, покидает их. Бывает, что и возникают затруднения, вызванные медленным прохождением специального вещества сквозь мембраны клеточные.

В этом случае, чтобы разрушить мембраны обычно измельчают ткани , для того, чтобы специальное вещество инкубировало клеточную кашицу. Такие опыты доказали, что все живые клетки организма способны окислить глюкозу до углекислого газа и воды, и только тканевые клетки печени могут мочевину синтезировать.

Используем клетки?!

По своей структуре клетки представляют очень сложную организованную систему. Общеизвестно, что клетка состоит из ядра, цитоплазмы, а в окружающей цитоплазме находятся мелкие тельца, которые называются органеллы. Они бывают различными по размерам и консистенциям.

Благодаря специальным методикам, можно будет гомогенизовать ткани клеток, а после, подвергнуть специальному разделению (центрифугированию дифференциальному), таким образом, получить препараты, которые будут содержать одни лишь митохондрии, одни лишь микросомы, а также плазму или прозрачную жидкость. Данные препараты инкубируются по отдельности с тем соединением, чей метаболизм находится в стадии изучения, чтобы точно установить какие именно участвуют субклеточные структуры в последовательных изменениях.

Были известны случаи, когда первоначальная реакция начиналась в цитоплазме, а ее продукт подвергался изменениям в микросомах, а после этого, наблюдались изменения с другими уже реакциями с митохондриями. Изучаемого вещества инкубация с гомогенатом ткани или живыми клетками чаще всего не выявляет какие-то отдельные этапы, касающиеся метаболизма. Понять всю цепочку происходящих данных событий помогают следующие один за другим эксперименты, в которых используются для инкубации те или иные структуры субклеточные.

Как использовать радиоактивные изотопы

Чтобы изучить те или иные метаболические процессы какого-то вещества необходимо:

  • использовать аналитические методы для определения вещества данного и его метаболитов;
  • необходимо использовать такие методы, которые помогут отличить введенное вещество от того же вещества, но уже присутствующего в данном препарате.

Соблюдение данных требований было главным препятствием во время изучения метаболических процессов в организме, до того времени пока не были открыты радиоактивные изотопы, а также 14С – радиоактивный углевод. И после появления 14С и приборов, позволяющих измерить даже слабую радиоактивность, всем вышеперечисленным трудностям пришел конец. После чего, дела с измерением метаболических процессов пошли, как говорится, в гору.

Теперь, когда к специальному биологическому препарату (например, суспензии митохондрий) добавляют меченную жирную кислоту 14С, то, после этого, не нужно делать никаких специальных анализов для определения продуктов, влияющих на ее превращение. А чтобы выяснить скорость использования, теперь стало возможно просто измерить радиоактивность получаемых последовательно фракций митохондриальных.

Данная методика, помогает не только понять, как нормализовать метаболизм, но и благодаря ей можно легко отличить молекулы введенной радиоактивной жирной кислоты экспериментально, от присутствующих уже в митохондриях молекул жирной кислоты в самом начале эксперимента.

Электрофорез и... хроматография

Для того чтобы разобраться в том, что и как нормализует метаболизм, то есть как происходит нормализация метаболизма необходимы также использовать такие методы, которые помогут разделить смеси, в состав которых входят в малых количествах вещества органические. Одним из важнейших таких методов, основой которого является феномен адсорбции, считается метод хроматографии. Благодаря данному методу происходит разделение смеси компонентов.

При этом происходит разделение компонентов смеси, которое проводится либо путем адсорбции на сорбенте, либо, благодаря бумаге. При разделении путем адсорбции на сорбенте, то есть когда начинают заполнять такие специальные стеклянные трубки (колонки), с постепенной и последующей элюцией, то есть с последующим вымыванием каждого из имеющихся компонентов.

Метод разделения электрофореза напрямую зависит от наличия знаков, а также числа ионизированных зарядов молекул. Также электрофорез проводят на каком-нибудь из неактивных носителей, таких как целлюлоза, каучук, крахмал или, в конце концов, на бумаге.

Одним из самых высокочувствительных и эффективных методов разделения смеси является газовая хроматография. Таким методом разделения пользуются только в том случае, если нужные для разделения вещества находятся в состоянии газообразном или, к примеру, в любой момент могут перейти в это состояние.

Как происходит выделение ферментов?

Чтобы выяснить, как происходит выделение ферментов, для этого необходимо понять, что это является последним местом в данном ряду: животное, затем орган, затем тканевый срез, а после – фракция клеточных органелл и гомогенат занимает ферменты, которые катализирует определенную реакцию химическую. Выделить ферменты в очищенном виде стало важным направлением в изучении метаболических процессов.

Соединение и комбинирование вышеперечисленных методов позволило основные метаболические пути, у большинства организмов населяющих нашу планету, в том числе и у человека. К тому же, данные методы помогли установить ответы на вопрос, как протекают метаболические процессы в организме и также помогли выяснить системность основных этапов данных метаболических путей. Сегодня насчитывается более тысячи всевозможных биохимических реакций, которые уже изучены, а также изучены ферменты, которые участвуют в данных реакциях.

Так как для появления любого проявления в клетках жизни необходимо АТФ, то и неудивительно, что скорость метаболических процессов клеток жировых, в первую очередь, направлена на синтезирование АТФ. Для достижения этого используются различные по сложности последовательные реакции. Такие реакции, в основном, используют химическую потенциальную энергию, которая заключена в молекулах жиров (липидов) и углеводов.

Метаболические процессы между углеводами и липидами

Такой метаболический процесс между углеводами и липидами, по-другому, называются синтезом АТФ, анаэробным (значит, без участия кислорода) метаболизмом.

Основная роль липидов и углеводов состоит в том, что именно синтез АТФ обеспечивает более простые соединения, несмотря на то, что те же самые процессы протекали в примитивнейших клетках. Только в лишенной кислорода атмосфере стало невозможно полное окисление жиров и углеводов до углекислого газа.

Даже у этих примитивнейших клеток использовались те же самые процессы и механизмы, благодаря которым происходила перестройка самой структуры молекулы глюкозы, которая и синтезировала небольшие количества АТФ. По-другому, такие процессы у микроорганизмов называются брожением. На сегодня особенно хорошо изучено «брожение» глюкозы до состояния этилового спирта и углекислого газа у дрожжей.

Чтобы завершились все эти изменения и образовался ряд промежуточных продуктов, необходимо было проведение одиннадцати последовательных реакций, что, в конечном счете, в раде промежуточных продуктов представили (фосфаты), то есть эфиры кислоты фосфорной. Такая фосфатная группа переносилась на аденозиндифосфат (АДФ) и также с образованием АТФ. Всего две молекулы составляли чистый выход АТФ (на каждую из молекул глюкозы, полученную в результате процесса брожения). Подобные процессы также наблюдались во всех живых клетках организма, так как поставляли так необходимую для нормального функционирования энергию. Такие процессы очень часто называют анаэробным дыханием клеток, хотя это не совсем корректно.

Как у млекопитающих, так и у людей, данный процесс называется гликолизом, а его завершающим продуктом считается молочная кислота, а не СО2 (углекислый газ) и не спирт. За исключением двух последних этапов вся последовательность реакций гликолиза считается практически идентичной процессу, который протекает в клетках дрожжевых.

Метаболизм аэробный, значит с использованием кислорода

Очевидно, что с появлением кислорода в атмосфере, благодаря фотосинтезу растений, благодаря матушке-природе появился механизм, который позволял обеспечивать полное окисление глюкозу до воды и СО2. Такой аэробный процесс, позволял чистому выходу АТФ (из числа тридцати восьми молекул, из расчета на каждую молекулу глюкозы, только окисленную).

Такой процесс употребления клетками кислорода, для появления насыщенной энергией соединений сегодня известен как дыхание аэробное, клеточное. Такое дыхание осуществляется ферментами цитоплазмы (в отличие от анаэробного), а окислительные процессы проходят в митохондриях.

Здесь пировиноградная кислота, которая является промежуточным продуктом, после того, как образуется в анаэробной фазе, после окисляется до состояния СО2 благодаря последовательным шести реакциям, где в каждой реакции пара их электронов переносится на акцептор общий кофермент никотинамидадениндинуклеотид, сокращенно (НАД). Такая последовательность реакций и называется циклом кислот трикарбоновых, а также циклом кислоты лимонной или циклом Кребса, что приводит к тому, что каждая молекула глюкозу образует две молекулы кислоты пировиноградной. Во время данной реакции двенадцать пар электроном отходят от молекулы глюкозы для дальнейшего ее окисления.

В ходе источника энергии выступают... липиды

Оказывается, в качестве источника энергии, также как и углеводы, могут выступать жирные кислоты. Реакция окисления жирных кислот происходит благодаря последовательности отщепления от жирной кислоты (вернее ее молекула) двууглеродного фрагмента с появлением ацетилкофермента А, (по-другому, это ацетил-КоА) и передачи одновременных двух пар электронов саму цепь их переноса.

Таким образом, полученный ацетил-КоА такой же компонент цикла трикарбоновых кислот, чья дальнейшая судьба не особо отличается от ацетил-КоА, который поставляется благодаря углеводному обмену. Значит механизмы, синтезирующие АТФ при окислении, как метаболитов глюкозы, так и жирных кислот, практически идентичны.

Если энергия, поступающая в организм, получается практически за счет только одного процесса окисления жирных кислот (например, во время голодания, при таком заболевании как сахарный диатез и т.д.), то, в данном случае, интенсивность появления ацетил-КоА будет превышать интенсивность его окисления в самом цикле кислот трикарбоновых. В данном случае, молекулы ацетил-КоА (которые окажутся лишними) начнут реагировать друг с другом. Благодаря этому процессу появятся ацетоуксусная и b-гидроксимасляная кислоты. Такое накопление может стать причиной кетоза, это один из видов ацидоза, который может стать причиной тяжелой формы диабета и даже летального исхода.

Зачем запасы энергии?!

Чтобы как-то приобрести дополнительный запас энергии, к примеру, для животных, которые нерегулярно и не систематически питаются им просто необходимо как-то запастись необходимой энергией. Такие запасы энергии вырабатываются благодаря пищевым запасам, к которым относятся все те же жиры и углеводы .

Оказывается, жирные кислоты могут перейти в запас в виде жиров нейтральных, которые содержатся как в жировой ткани, так и в печени . А углеводы, при поступлении в огромном количестве в желудочно-кишечный тракт начинают гидролизироваться до глюкозы и других сахаров, которые при попадании в печень синтезируются в глюкозу. И тут же из глюкозы начинает синтезироваться полимер гигантский путем соединения остатков глюкозы, а также с отщеплением молекул воды.

Иногда остаточное количество глюкозы в гликогеновых молекулах доходит до 30000. А если ощущается потребность в энергии, тогда гликоген снова начинает распадаться до глюкозы во время химической реакции, продуктом последней является глюкозофосфат. Данный глюкозофосфат становится на путь процесса гликолиза, который составляет часть пути отвечающей за окисление глюкозы. Также может подвергнуться реакции гидролиза глюкозофосфат и в самой печени, а образовавшаяся таким образом глюкоза, доставляется к клеткам тела вместе с кровью.

Как происходит синтез из углеводов в липиды?

Любите углеводную пищу? Оказывается, если количество углеводов полученных с пищей за один прием, превышает допустимую норму, в таком случае, углеводы переходят в «запас» в виде гликогена, то есть, избыточная углеводная пища превращается в жиры. Сначала образуется ацетил-КоА из глюкозы, а потом он начинается синтезироваться в цитоплазме клетки для жирных длинноцепочечных кислот.

Данный процесс «превращения» можно описать как нормальный окислительный процесс жирных клеток. После чего, жирные кислоты начинают откладываться в виде триглицеридов, то есть нейтральных жиров, которые отлагаются (в основном проблемных зонах), в различных частях тела.

Если организму срочно понадобится энергия, тогда жиры нейтральные подвергшись гидролизу, а также жирные кислоты начинают поступать в кровь. Тут они насыщаются молекулами альбуминов и глобулинов, то есть плазменных белков, а потом начинают поглощаться другими, самыми разными клетками. У животных нет таких механизмом, которые могут осуществить синтез из глюкозы и жирных кислот, а вот у растений они имеются.

Синтез соединений азотосодержащих

В организме животных аминокислоты применяются не только в качестве белкового биосинтеза, но и в качестве начального материала готового для синтеза некоторых азотосодержащих соединений. Такая аминокислота как тирозин становится предшественником таких гормонов как норадреналин и адреналин. А глицерин (простейшая аминокислота) служит исходящим материалом для биосинтеза пуринов, которые входят в состав нуклеиновой кислоты, а также порфиринов и цитохромов.

Предшественником пиримидинов нуклеиновых кислот является аспарагиновая кислота, а группа метионина начинает передаваться в ходе синтеза креатина, саркозина и холина. Предшественником никотиновой кислоты является триптофан, а из валина (который образуется в растениях) может синтезироваться такой витамин как кислота пантотеновая. И это только некоторые примеры использования синтеза соединений азотосодержащих.

Как происходит липидный метаболизм

Обычно, в организм липиды попадают в виде триглицеридов жирных кислот. Попадая в кишечник под воздействие ферментов, вырабатываемых поджелудочной железой, они начинают подвергаться гидролизу. Тут они снова синтезируются как жиры нейтральные, после этого, они попадают или в печень, или в кровь, а также могут отложиться в виде запаса в жировой ткани.

Мы уже говорили о том, что жирные кислоты также могут заново синтезироваться из ранее появившихся предшественников углеводных. Необходимо также отметить, что, несмотря на то, что в клетках животных могут наблюдаться одновременное включение одной двойной связи в длинноцепочечных молекулах жирных кислот. Включать вторую и даже третью двойственная связь данные клетки не могут.

А так как жирные кислоты с тремя и двумя двойственными связями играют важную роль в метаболических процессах животных (в том числе и человека), по своей сущности они являются важными питательными компонентами, можно сказать, витаминами. Именно поэтому линоленовую (С18:3) и линолевую (С18:2) называют еще и незаменимыми жирными кислотами. Также обнаружено, что в клетках в линоленовую кислоту также может включиться двойственная четвертая связь. Благодаря удлинению углеродной цепи может появиться еще один важный участник метаболических реакций арахидоновая кислота (С20:4).

Во время синтеза липидов могут наблюдаться остатки жирных кислот, которые связаны с коферментом А. Благодаря синтезу, эти остатки переносятся на глицерофосфат эфир глицерина и фосфорной кислоты. В результате данной реакции образуется соединение фосфатидной кислоты, где одно ее соединение – это глицерина этерифицированного фосфорной кислотой, а другие две – жирными кислотами.

При появлении нейтральных жиров фосфорная кислота будет удалена путем гидролиза, а на ее месте окажется жирная кислота, появившаяся в результате химической реакции с ацил-КоА. Сам кофермент А может появиться благодаря одному из витаминов пантотеновой кислоты. В данной молекуле содержится сульфгидрильная группа, которая реагирует на кислоты с появлением тиоэфиров. В свою очередь, фосфолипидная фосфатидная кислота реагирует на азотистые основания, такие как серин, холин и этаноламин.

Таким образом, все встреченные в организме млекопитающих стероиды (за исключением витамина Д) могут самостоятельно синтезироваться самим организмом.

Как происходит метаболизм белков?

Доказано, что имеющиеся во всех живых клетках белки, состоят из двадцати одного вида аминокислот, которые соединены в различной последовательности. Данные аминокислоты и синтезируются организмами. Такой синтез обычно приводит к появлению а-кетокислоты. Именно, а-кетокислота или а-кетоглутаровая кислота и участвуют в синтезе азота.

Человеческий организм, как и организм многих животных, сумел сохранить умение синтезировать все имеющиеся аминокислоты (исключение составляет несколько незаменимых аминокислот), которые должны обязательно поступать с пищей.

Как происходит синтез белка

Данный процесс обычно протекает следующим образом. Каждая аминокислота в цитоплазме клетки вступает в реакцию с АТФ и после примыкает к завершающей группе молекулы рибонуклеиновой кислоты, которая именно специфична для этой аминокислоты. Затем усложненная молекула соединяется с рибосомой, определяемой в положении более удлиненной молекулы кислоты рибонуклеиновой, которая соединяется с рибосомой.

После того, как все сложные молекулы выстраиваются, происходит разрыв между аминокислотой и рибонуклеиновой кислотой, соседние аминокислоты начинают синтезироваться и таким образом получается белок. Нормализация метаболизма происходит благодаря гармоничному синтезу белково-углеводно-жировых метаболических процессов.

Так что же такое метаболизм органических веществ?

Чтобы лучше понять и разобраться в метаболических процессах, а также, чтобы восстановить здоровье и улучшить обмен веществ, необходимо придерживаться следующих рекомендаций, касающихся нормализации и восстановлении метаболизма.

  • Важно понимать, что метаболические процессы нельзя обратить вспять. Распад веществ никогда не протекает по простому пути обращения синтезирующих реакций. В этом распаде обязательно принимают участие другие ферменты, а также некоторые промежуточные продукты. Очень часто направленные в разную сторону процессы начинают протекать в разных отсеках клетки. К примеру, жирные кислоты могут синтезироваться в цитоплазме клетки при воздействии одного какого-то набора ферментов, а процесс окисления в митохондриях может происходить совсем при другом наборе.
  • В живых клетках организма наблюдается достаточное количество ферментов, для того, чтобы ускорить процесс метаболических реакций, но, несмотря на это метаболические процессы не всегда протекают быстро, таким образом, это указывает на существование в наших клетках некоторых регуляторных механизмов, которые воздействуют на обменные процессы. На сегодняшний день уже открыты некоторые виды таких механизмов.
  • Один из факторов, влияющий на снижение скорости метаболических процессов данного вещества, является поступлением данного вещества в саму клетку. Поэтому, регуляция обменных процессов может быть направленная и на этот фактор. Например, если взять инсулин, функция которого, как нам известно, связана с облегчением проникновения глюкозы во все клетки. Скорость «превращения» глюкозы, в таком случае, будет зависеть от скорости, с которой она поступила. Если же рассмотреть кальций и железо, когда они из кишечника попадают в кровь, то скорость метаболических реакций, в данном случае, будет зависеть от многих, в том числе и регулирующих процессов.
  • Свободно передвигаться из одного клеточного отсека в другой, к сожалению, могут далеко не все вещества. Также существует предположение, что перенос внутриклеточный постоянно контролируется некими гормонами стероидными.
  • Учеными были выявлены два вида сервомеханизмов, которые отвечают в метаболических процессах за отрицательную обратную связь.
  • Даже у бактерий были отмечены примеры, доказывающие присутствие каких-нибудь последовательных реакций. К примеру, биосинтез одного из ферментов, подавляет аминокислоты, так необходимые для получения данной аминокислоты.
  • Изучая отдельные случаи метаболических реакций, было выявлено что фермент, чей биосинтез был затронутым, оказывался ответственным за главный этап метаболического пути, приведшего к синтезу аминокислоты.
  • Важно понять, что в процессах метаболических и биосинтетических участвует небольшое количество блоков строительных, каждый из которых начинает использовать для синтеза множества соединений. К таким соединениям относятся: ацетилкофермент А, глицин, глицерофосфат, карбамилфосфат и другие. Из этих небольших компонентов выстраиваются потом сложные и разнообразные соединения, которые можно наблюдать в живых организмах.
  • Очень редко принимают непосредственное участие в метаболических процессах простые соединения органические. Такие соединения для того, чтобы проявить свою активность должны будут присоединиться к какому-нибудь ряду соединений, который активно участвует в метаболических процессах. К примеру, глюкоза может начать окислительные процессы только после того, как будет подвержена этирифицированию фосфорной кислотой, а для других последующих изменений она должна будет этерифицирована уридиндифосфатом.
  • Если рассмотреть жировые кислоты, то они также не могут принять участие в метаболических изменениях до тех пор, пока они образуют эфиры с коферментом А. При этом, любой активатор становится родственен кому-нибудь из нуклеотидов, которые входят в состав рибонуклеиновой кислоты или образуются из какого-то витамина. Поэтому становится понятным, почему нам требуются витамины только в небольших количествах. Расходуются они благодаря коферментам, при этом каждая молекула кофермента в течение всей свой жизни используется несколько раз, в отличие от питательных веществ, молекулы которых используются единожды (например, молекулы глюкозы).

И последнее! Завершая данную тематику, очень хочется сказать, что сам термин «метаболизм» если раньше означал как синтез белков, углеводов и жиров в организме, то сейчас его используют в качестве обозначения нескольких тысяч ферментативных реакций, которые могут представлять собою огромную сеть соединенных между собою метаболических путей.

Вконтакте

Метаболизм. Процессы метаболизма.

Общее представление о метаболизме органических веществ.
Что такое метаболизм? Понятие метаболизма. Методы исследования.
Метаболизм - значение слова. Метаболизм углеводов и липоидов.

Метаболизм белков

МЕТАБОЛИЗМ - этообмен веществ, химические превращения, протекающие от момента поступления питательных веществ в живой организм до момента, когда конечные продукты этих превращений выделяются во внешнюю среду. К метаболизму относятся все реакции, в результате которых строятся структурные элементы клеток и тканей, и процессы, в которых из содержащихся в клетках веществ извлекается энергия. Иногда для удобства рассматривают по отдельности две стороны метаболизма – анаболизм и катаболизм, т.е. процессы созидания органических веществ и процессы их разрушения. Анаболические процессы обычно связаны с затратой энергии и приводят к образованию сложных молекул из более простых, катаболические же сопровождаются высвобождением энергии и заканчиваются образованием таких конечных продуктов (отходов) метаболизма, как мочевина, диоксид углерода, аммиак и вода.

Клеточный метаболизм.

Живая клетка – это высокоорганизованная система. В ней имеются различные структуры, а также ферменты, способные их разрушить. Содержатся в ней и крупные макромолекулы, которые могут распадаться на более мелкие компоненты в результате гидролиза (расщепления под действием воды). В клетке обычно много калия и очень мало натрия, хотя клетка существует в среде, где натрия много, а калия относительно мало, и клеточная мембрана легко проницаема для обоих ионов. Следовательно, клетка – это химическая система, весьма далекая от равновесия. Равновесие наступает только в процессе посмертного автолиза (само переваривания под действием собственных ферментов).

Потребность в энергии.

Чтобы удержать систему в состоянии, далеком от химического равновесия, требуется производить работу, а для этого необходима энергия. Получение этой энергии и выполнение этой работы – непременное условие для того, чтобы клетка оставалась в своем стационарном (нормальном) состоянии, далеком от равновесия. Одновременно в ней выполняется и иная работа, связанная со взаимодействием со средой, например: в мышечных клетках – сокращение; в нервных клетках – проведение нервного импульса; в клетках почек – образование мочи, значительно отличающейся по своему составу от плазмы крови; в специализированных клетках желудочно-кишечного тракта – синтез и выделение пищеварительных ферментов; в клетках эндокринных желез – секреция гормонов; в клетках светляков – свечение; в клетках некоторых рыб – генерирование электрических разрядов и т.д.

Источники энергии.

В любом из перечисленных выше примеров непосредственным источником энергии, которую клетка использует для производства работы, служит энергия, заключенная в структуре аденозинтрифосфата (АТФ). В силу особенностей своей структуры это соединение богато энергией, и разрыв связей между его фосфатными группами может происходить таким образом, что высвобождающаяся энергия используется для производства работы. Однако энергия не может стать доступной для клетки при простом гидролитическом разрыве фосфатных связей АТФ: в этом случае она расходуется впустую, выделяясь в виде тепла. Процесс должен состоять из двух последовательных этапов, в каждом из которых участвует промежуточный продукт, обозначенный здесь X–Ф (в приведенных уравнениях X и Y означают два разных органических вещества; Ф – фосфат; АДФ – аденозиндифосфат).

Термин «обмен веществ» вошел в повседневную жизнь с тех пор, как врачи стали связывать избыточный или недостаточный вес, чрезмерную нервозность или, наоборот, вялость больного с повышенным или пониженным обменом. Для суждения об интенсивности метаболизма ставят тест на «основной обмен». Основной обмен – это показатель способности организма вырабатывать энергию. Тест проводят натощак в состоянии покоя; измеряют поглощение кислорода (О2) и выделение диоксида углерода (СО2). Сопоставляя эти величины, определяют, насколько полно организм использует («сжигает») питательные вещества. На интенсивность метаболизма влияют гормоны щитовидной железы, поэтому врачи при диагностике заболеваний, связанных с нарушениями обмена, в последнее время все чаще измеряют уровень этих гормонов в крови.

Методы исследования метаболизма.

При изучении метаболизма какого-нибудь одного из питательных веществ прослеживают все его превращения от той формы, в какой оно поступает в организм, до конечных продуктов, выводимых из организма. В таких исследованиях применяется крайне разнообразный набор биохимических методов. Использование интактных животных или органов. Животному вводят изучаемое соединение, а затем в его моче и экскрементах определяют возможные продукты превращений (метаболиты) этого вещества. Более определенную информацию можно получить, исследуя метаболизм определенного органа, например печени или мозга. В этих случаях вещество вводят в соответствующий кровеносный сосуд, а метаболиты определяют в крови, оттекающей от данного органа. Поскольку такого рода процедуры сопряжены с большими трудностями, часто для исследования используют тонкие срезы органов. Их инкубируют при комнатной температуре или при температуре тела в растворах с добавкой того вещества, метаболизм которого изучают. Клетки в таких препаратах не повреждены, и так как срезы очень тонкие, вещество легко проникает в клетки и легко выходит из них. Иногда затруднения возникают из-за слишком медленного прохождения вещества сквозь клеточные мембраны. В этих случаях ткани измельчают, чтобы разрушить мембраны, и с изучаемым веществом инкубируют клеточную кашицу. Именно в таких опытах было показано, что все живые клетки окисляют глюкозу до СО2 и воды и что только ткань печени способна синтезировать мочевину.

Использование клеток.

Даже клетки представляют собой очень сложно организованные системы. В них имеется ядро, а в окружающей его цитоплазме находятся более мелкие тельца, т.н. органеллы, различных размеров и консистенции. С помощью соответствующей методики ткань можно «гомогенизировать», а затем подвергнуть дифференциальному центрифугированию (разделению) и получить препараты, содержащие только митохондрии, только микросомы или прозрачную жидкость – цитоплазму. Эти препараты можно по отдельности инкубировать с тем соединением, метаболизм которого изучается, и таким путем установить, какие именно субклеточные структуры участвуют в его последовательных превращениях. Известны случаи, когда начальная реакция протекает в цитоплазме, ее продукт подвергается превращению в микросомах, а продукт этого превращения вступает в новую реакцию уже в митохондриях. Инкубация изучаемого вещества с живыми клетками или с гомогенатом ткани обычно не выявляет отдельные этапы его метаболизма, и только последовательные эксперименты, в которых для инкубации используются те или иные субклеточные структуры, позволяют понять всю цепочку событий.

Использование радиоактивных изотопов.

Для изучения метаболизма какого-либо вещества необходимы: 1) соответствующие аналитические методы для определения этого вещества и его метаболитов; и 2) методы, позволяющие отличать добавленное вещество от того же вещества, уже присутствующего в данном биологическом препарате. Эти требования служили главным препятствием при изучении метаболизма до тех пор, пока не были открыты радиоактивные изотопы элементов и в первую очередь радиоактивный углерод 14C. С появлением соединений, «меченных» 14C, а также приборов для измерения слабой радиоактивности эти трудности были преодолены. Если к биологическому препарату, например к суспензии митохондрий, добавляют меченную 14C жирную кислоту, то никаких специальных анализов для определения продуктов ее превращений не требуется; чтобы оценить скорость ее использования, достаточно просто измерять радиоактивность последовательно получаемых митохондриальных фракций. Эта же методика позволяет легко отличать молекулы радиоактивной жирной кислоты, введенной экспериментатором, от молекул жирной кислоты, уже присутствовавших в митохондриях к началу эксперимента.

Хроматография и электрофорез.

В дополнение к вышеупомянутым требованиям необходимы и методы, позволяющие разделять смеси, состоящие из малых количеств органических веществ. Важнейший из них – хроматография, в основе которой лежит феномен адсорбции. Разделение компонентов смеси проводят при этом либо на бумаге, либо путем адсорбции на сорбенте, которым заполняют колонки (длинные стеклянные трубки), с последующей постепенной элюцией (вымыванием) каждого из компонентов.

Разделение методом электрофореза зависит от знака и числа зарядов ионизированных молекул. Электрофорез проводят на бумаге или на каком-нибудь инертном (неактивном) носителе, таком, как крахмал, целлюлоза или каучук. Высокочувствительный и эффективный метод разделения – газовая хроматография. Им пользуются в тех случаях, когда подлежащие разделению вещества находятся в газообразном состоянии или могут быть в него переведены.

Выделение ферментов.

Последнее место в описываемом ряду – животное, орган, тканевой срез, гомогенат и фракция клеточных органелл – занимает фермент, способный катализировать определенную химическую реакцию. Выделение ферментов в очищенном виде – важный раздел в изучении метаболизма.

Сочетание перечисленных методов позволило проследить главные метаболические пути у большей части организмов (в том числе у человека), установить, где именно эти различные процессы протекают, и выяснить последовательные этапы главных метаболических путей. К настоящему времени известны тысячи отдельных биохимических реакций, изучены участвующие в них ферменты.

Поскольку практически для любого проявления жизнедеятельности клеток необходим АТФ, неудивительно, что метаболическая активность живых клеток направлена в первую очередь на синтез АТФ. Этой цели служат различные сложные последовательности реакций, в которых используется потенциальная химическая энергия, заключенная в молекулах углеводов и жиров (липидов).

МЕТАБОЛИЗМ УГЛЕВОДОВ И ЛИПОИДОВ

Синтез АТФ. Анаэробный метаболизм (без участия кислорода).

Главная роль углеводов и липидов в клеточном метаболизме состоит в том, что их расщепление на более простые соединения обеспечивает синтез АТФ. Несомненно, что те же процессы протекали и в первых, самых примитивных клетках. Однако в атмосфере, лишенной кислорода, полное окисление углеводов и жиров до CO2 было невозможно. У этих примитивных клеток имелись все же механизмы, с помощью которых перестройка структуры молекулы глюкозы обеспечивала синтез небольших количеств АТФ. Речь идет о процессах, которые у микроорганизмов называют брожением. Лучше всего изучено сбраживание глюкозы до этилового спирта и CO2 у дрожжей.

В ходе 11 последовательных реакций, необходимых для того, чтобы завершилось это превращение, образуется ряд промежуточных продуктов, представляющих собой эфиры фосфорной кислоты (фосфаты). Их фосфатная группа переносится на аденозиндифосфат (АДФ) с образованием АТФ. Чистый выход АТФ составляет 2 молекулы АТФ на каждую молекулу глюкозы, расщепленную в процессе брожения. Аналогичные процессы происходят во всех живых клетках; поскольку они поставляют необходимую для жизнедеятельности энергию, их иногда (не вполне корректно) называют анаэробным дыханием клеток.

У млекопитающих, в том числе у человека, такой процесс называется гликолизом и его конечным продуктом является молочная кислота, а не спирт и CO2. Вся последовательность реакций гликолиза, за исключением двух последних этапов, полностью идентична процессу, протекающему в дрожжевых клетках.

Аэробный метаболизм (с использованием кислорода).

С появлением в атмосфере кислорода, источником которого послужил, очевидно, фотосинтез растений, в ходе эволюции развился механизм, обеспечивающий полное окисление глюкозы до CO2 и воды, – аэробный процесс, в котором чистый выход АТФ составляет 38 молекул АТФ на каждую окисленную молекулу глюкозы. Этот процесс потребления клетками кислорода для образования богатых энергией соединений известен как клеточное дыхание (аэробное). В отличие от анаэробного процесса, осуществляемого ферментами цитоплазмы, окислительные процессы протекают в митохондриях. В митохондриях пировиноградная кислота – промежуточный продукт, образовавшийся в анаэробной фазе – окисляется до СО2 в шести последовательных реакциях, в каждой из которых пара электронов переносится на общий акцептор – кофермент никотинамидадениндинуклеотид (НАД). Эту последовательность реакций называют циклом трикарбоновых кислот, циклом лимонной кислоты или циклом Кребса. Из каждой молекулы глюкозы образуется 2 молекулы пировиноградной кислоты; 12 пар электронов отщепляется от молекулы глюкозы в ходе ее окисления.

Липиды как источник энергии.

Жирные кислоты могут использоваться в качестве источника энергии приблизительно так же, как и углеводы. Окисление жирных кислот протекает путем последовательного отщепления от молекулы жирной кислоты двууглеродного фрагмента с образованием ацетилкофермента A (ацетил-КоА) и одновременной передачей двух пар электронов в цепь переноса электронов. Образовавшийся ацетил-КоА – нормальный компонент цикла трикарбоновых кислот, и в дальнейшем его судьба не отличается от судьбы ацетил-КоА, поставляемого углеводным обменом. Таким образом, механизмы синтеза АТФ при окислении, как жирных кислот, так и метаболитов глюкозы практически одинаковы.

Если организм животного получает энергию почти целиком за счет одного только окисления жирных кислот, а это бывает, например, при голодании или при сахарном диабете, то скорость образования ацетил-КоА превышает скорость его окисления в цикле трикарбоновых кислот. В этом случае лишние молекулы ацетил-КоА реагируют друг с другом, в результате чего образуются в конечном счете ацетоуксусная и b-гидроксимасляная кислоты. Их накопление является причиной патологического состояния, т.н. кетоза (одного из видов ацидоза), который при тяжелом диабете может вызвать кому и смерть.

Запасание энергии.

Животные питаются нерегулярно, и их организму нужно как-то запасать заключенную в пище энергию, источником которой являются поглощенные животным углеводы и жиры. Жирные кислоты могут запасаться в виде нейтральных жиров либо в печени, либо в жировой ткани. Углеводы, поступая в большом количестве, в желудочно-кишечном тракте гидролизуются до глюкозы или иных сахаров, которые затем в печени превращаются в ту же глюкозу. Здесь из глюкозы синтезируется гигантский полимер гликоген путем присоединения друг к другу остатков глюкозы с отщеплением молекул воды (число остатков глюкозы в молекулах гликогена доходит до 30 000). Когда возникает потребность в энергии, гликоген вновь распадается до глюкозы в реакции, продуктом которой является глюкозофосфат. Этот глюкозофосфат направляется на путь гликолиза – процесса, составляющего часть пути окисления глюкозы. В печени глюкозофосфат может также подвергнуться гидролизу, и образующаяся глюкоза поступает в кровоток и доставляется кровью к клеткам в разных частях тела.

Синтез липидов из углеводов.

Если количество углеводов, поглощенных с пищей за один прием, больше того, какое может быть запасено в виде гликогена, то избыток углеводов превращается в жиры. Начальная последовательность реакций совпадает при этом с обычным окислительным путем, т.е. сначала из глюкозы образуется ацетил-КоА, но далее этот ацетил-КоА используется в цитоплазме клетки для синтеза длинноцепочечных жирных кислот. Процесс синтеза можно описать как обращение обычного процесса окисления жирных клеток. Затем жирные кислоты запасаются в виде нейтральных жиров (триглицеридов), отлагающихся в разных частях тела. Когда требуется энергия, нейтральные жиры подвергаются гидролизу и жирные кислоты поступают в кровь. Здесь они адсорбируются молекулами плазменных белков (альбуминов и глобулинов) и затем поглощаются клетками самых разных типов. Механизмов, способных осуществлять синтез глюкозы из жирных кислот, у животных нет, но у растений такие механизмы имеются.

Метаболизм липидов.

Липиды попадают в организм главным образом в форме триглицеридов жирных кислот. В кишечнике под действием ферментов поджелудочной железы они подвергаются гидролизу, продукты которого всасываются клетками стенки кишечника. Здесь из них вновь синтезируются нейтральные жиры, которые через лимфатическую систему поступают в кровь и либо транспортируются в печень, либо отлагаются в жировой ткани. Выше уже указывалось, что жирные кислоты могут также синтезироваться заново из углеводных предшественников. Следует отметить, что, хотя в клетках млекопитающих может происходить включение одной двойной связи в молекулы длинноцепочечных жирных кислот (между С–9 и С–10), включать вторую и третью двойную связь эти клетки неспособны. Поскольку жирные кислоты с двумя и тремя двойными связями играют важную роль в метаболизме млекопитающих, они в сущности являются витаминами. Поэтому линолевую (C18:2) и линоленовую (C18:3) кислоты называют незаменимыми жирными кислотами. В то же время в клетках млекопитающих в линоленовую кислоту может включаться четвертая двойная связь и путем удлинения углеродной цепи может образоваться арахидоновая кислота (C20:4), также необходимый участник метаболических процессов.

В процессе синтеза липидов остатки жирных кислот, связанные с коферментом А (ацил-КоА), переносятся на глицерофосфат – эфир фосфорной кислоты и глицерина. В результате образуется фосфатидная кислота – соединение, в котором одна гидроксильная группа глицерина этерифицирована фосфорной кислотой, а две группы – жирными кислотами. При образовании нейтральных жиров фосфорная кислота удаляется путем гидролиза, и ее место занимает третья жирная кислота в результате реакции с ацил-КоА. Кофермент А образуется из пантотеновой кислоты (одного из витаминов). В его молекуле имеется сульфгидрильная (– SH) группа, способная реагировать с кислотами с образованием тиоэфиров. При образовании фосфолипидов фосфатидная кислота реагирует непосредственно с активированным производным одного из азотистых оснований, таких, как холин, этаноламин или серин.

За исключением витамина D, все встречающиеся в организме животных стероиды (производные сложных спиртов) легко синтезируются самим организмом. Сюда относятся холестерин (холестерол), желчные кислоты, мужские и женские половые гормоны и гормоны надпочечников. В каждом случае исходным материалом для синтеза служит ацетил-КоА: из ацетильных групп путем многократно повторяющейся конденсации строится углеродный скелет синтезируемого соединения.

МЕТАБОЛИЗМ БЕЛКОВ

Синтез аминокислот. Растения и большинство микроорганизмов могут жить и расти в среде, в которой для их питания имеются только минеральные вещества, диоксид углерода и вода. Это значит, что все обнаруживаемые в них органические вещества эти организмы синтезируют сами. Встречающиеся во всех живых клетках белки построены из 21 вида аминокислот, соединенных в различной последовательности. Аминокислоты синтезируются живыми организмами. В каждом случае ряд химических реакций приводит к образованию a-кетокислоты. Одна такая a-кетокислота, а именно a-кетоглутаровая (обычный компонент цикла трикарбоновых кислот), участвует в связывании азота.

Азот глутаминовой кислоты может быть затем передан любой из других a-кетокислот с образованием соответствующей аминокислоты.

Организм человека и большинства других животных сохранил способность синтезировать все аминокислоты за исключением девяти т.н. незаменимых аминокислот. Поскольку кетокислоты, соответствующие этим девяти, не синтезируются, незаменимые аминокислоты должны поступать с пищей.

Синтез белков.

Аминокислоты нужны для биосинтеза белка. Процесс биосинтеза протекает обычно следующим образом. В цитоплазме клетки каждая аминокислота «активируется» в реакции с АТФ, а затем присоединяется к концевой группе молекулы рибонуклеиновой кислоты, специфичной именно для данной аминокислоты. Эта сложная молекула связывается с небольшим тельцем, т.н. рибосомой, в положении, определяемом более длинной молекулой рибонуклеиновой кислоты, прикрепленной к рибосоме. После того как все эти сложные молекулы соответствующим образом выстроились, связи между исходной аминокислотой и рибонуклеиновой кислотой разрываются и возникают связи между соседними аминокислотами – синтезируется специфичный белок. Процесс биосинтеза поставляет белки не только для роста организма или для секреции в среду. Все белки живых клеток со временем претерпевают распад до составляющих их аминокислот, и для поддержания жизни клетки должны синтезироваться вновь.

Синтез других азотсодержащих соединений.

В организме млекопитающих аминокислоты используются не только для биосинтеза белков, но и как исходный материал для синтеза многих азотсодержащих соединений. Аминокислота тирозин является предшественником гормонов адреналина и норадреналина. Простейшая аминокислота глицин служит исходным материалом для биосинтеза пуринов, входящих в состав нуклеиновых кислот, и порфиринов, входящих в состав цитохромов и гемоглобина. Аспарагиновая кислота – предшественник пиримидинов нуклеиновых кислот. Метильная группа метионина передается ряду других соединений в ходе биосинтеза креатина, холина и саркозина. При биосинтезе креатина от одного соединения к другому передается также и гуанидиновая группировка аргинина. Триптофан служит предшественником никотиновой кислоты, а из валина в растениях синтезируется такой витамин, как пантотеновая кислота. Все это лишь отдельные примеры использования аминокислот в процессах биосинтеза.

Азот, поглощаемый микроорганизмами и высшими растениями в виде иона аммония, расходуется почти целиком на образование аминокислот, из которых затем синтезируются многие азотсодержащие соединения живых клеток. Избыточных количеств азота ни растения, ни микроорганизмы не поглощают. В отличие от них, у животных количество поглощенного азота зависит от содержащихся в пище белков. Весь азот, поступивший в организм в виде аминокислот и не израсходованный в процессах биосинтеза, довольно быстро выводится из организма с мочой. Происходит это следующим образом. В печени неиспользованные аминокислоты передают свой азот a-кетоглутаровой кислоте с образованием глутаминовой кислоты, которая дезаминируется, высвобождая аммиак. Далее азот аммиака может либо на время запасаться путем синтеза глутамина, либо сразу же использоваться для синтеза мочевины, протекающего в печени.

У глутамина есть и другая роль. Он может подвергаться гидролизу в почках с высвобождением аммиака, который поступает в мочу в обмен на ионы натрия. Этот процесс крайне важен как средство поддержания кислотно-щелочного равновесия в организме животного. Почти весь аммиак, происходящий из аминокислот и, возможно, из других источников, превращается в печени в мочевину, так что свободного аммиака в крови обычно почти нет. Однако при некоторых условиях довольно значительные количества аммиака содержит моча. Этот аммиак образуется в почках из глутамина и переходит в мочу в обмен на ионы натрия, которые таким образом реадсорбируются и задерживаются в организме. Этот процесс усиливается при развитии ацидоза – состояния, при котором организм нуждается в дополнительных количествах катионов натрия для связывания избытка ионов бикарбоната в крови.

Избыточные количества пиримидинов тоже распадаются в печени через ряд реакций, в которых высвобождается аммиак. Что касается пуринов, то их избыток подвергается окислению с образованием мочевой кислоты, выделяющейся с мочой у человека и других приматов, но не у остальных млекопитающих. У птиц отсутствует механизм синтеза мочевины, и именно мочевая кислота, а не мочевина, является у них конечным продуктом обмена всех азотсодержащих соединений.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ О МЕТАБОЛИЗМЕ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Можно сформулировать некоторые общие понятия, или «правила», касающиеся метаболизма. Приведенные ниже несколько главных «правил» позволяют лучше понять, как протекает и регулируется метаболизм.

1. Метаболические пути необратимы. Распад никогда не идет по пути, который являлся бы простым обращением реакций синтеза. В нем участвуют другие ферменты и другие промежуточные продукты. Нередко противоположно направленные процессы протекают в разных отсеках клетки. Так, жирные кислоты синтезируются в цитоплазме при участии одного набора ферментов, а окисляются в митохондриях при участии совсем другого набора.

2. Ферментов в живых клетках достаточно для того, чтобы все известные метаболические реакции могли протекать гораздо быстрее, чем это обычно наблюдается в организме. Следовательно, в клетках существуют какие-то регуляторные механизмы. Открыты разные типы таких механизмов.

а) Фактором, ограничивающим скорость метаболических превращений данного вещества, может быть поступление этого вещества в клетку; именно на этот процесс в таком случае и направлена регуляция. Роль инсулина, например, связана с тем, что он, по-видимому, облегчает проникновение глюкозы во все клетки, глюкоза же подвергается превращениям с той скоростью, с какой она поступает. Сходным образом проникновение железа и кальция из кишечника в кровь зависит от процессов, скорость которых регулируется.

б) Вещества далеко не всегда могут свободно переходить из одного клеточного отсека в другой; есть данные, что внутриклеточный перенос регулируется некоторыми стероидными гормонами.

в) Выявлено два типа сервомеханизмов «отрицательной обратной связи».

У бактерий были обнаружены примеры того, что присутствие продукта какой-нибудь последовательности реакций, например аминокислоты, подавляет биосинтез одного из ферментов, необходимых для образования этой аминокислоты.

В каждом случае фермент, биосинтез которого оказывается затронутым, был ответствен за первый «определяющий» этап (на схеме реакция 4) метаболического пути, ведущего к синтезу данной аминокислоты.

Второй механизм хорошо изучен у млекопитающих. Это простое ингибирование конечным продуктом (в нашем случае – аминокислотой) фермента, ответственного за первый «определяющий» этап метаболического пути.

Еще один тип регулирования посредством обратной связи действует в тех случаях, когда окисление промежуточных продуктов цикла трикарбоновых кислот сопряжено с образованием АТФ из АДФ и фосфата в процессе окислительного фосфорилирования. Если весь имеющийся в клетке запас фосфата и (или) АДФ уже исчерпан, то окисление приостанавливается и может возобновиться лишь после того, как этот запас вновь станет достаточным. Таким образом, окисление, смысл которого в том, чтобы поставлять полезную энергию в форме АТФ, происходит только тогда, когда возможен синтез АТФ.

3. В биосинтетических процессах участвует сравнительно небольшое число строительных блоков, каждый из которых используется для синтеза многих соединений. Среди них можно назвать ацетилкофермент А, глицерофосфат, глицин, карбамилфосфат, поставляющий карбамильную (H2N–CO–) группу, производные фолиевой кислоты, служащие источником гидроксиметильной и формильной групп, S-аденозилметионин – источник метильных групп, глутаминовую и аспарагиновую кислоты, поставляющие аминогруппы, и наконец, глутамин – источник амидных групп. Из этого относительно небольшого числа компонентов строятся все те разнообразные соединения, которые мы находим в живых организмах.

4. Простые органические соединения редко участвуют в метаболических реакциях непосредственно. Обычно они должны быть сначала «активированы» путем присоединения к одному из ряда соединений, универсально используемых в метаболизме. Глюкоза, например, может подвергнуться окислению лишь после того, как она будет этерифицирована фосфорной кислотой, для прочих же своих превращений она должна быть этерифицирована уридиндифосфатом. Жирные кислоты не могут быть вовлечены в метаболические превращения прежде, чем они образуют эфиры с коферментом А. Каждый из этих активаторов либо родствен одному из нуклеотидов, входящих в состав рибонуклеиновой кислоты, либо образуется из какого-нибудь витамина. Легко понять в связи с этим, почему витамины требуются в таких небольших количествах. Они расходуются на образование «коферментов», а каждая молекула кофермента на протяжении жизни организма используется многократно, в отличие от основных питательных веществ (например, глюкозы), каждая молекула которых используется только один раз.

В заключение следует сказать, что термин «метаболизм», означавший ранее нечто не более сложное, чем просто использование углеводов и жиров в организме, теперь применяется для обозначения тысяч ферментативных реакций, вся совокупность которых может быть представлена как огромная сеть метаболических путей, многократно пересекающихся (из-за наличия общих промежуточных продуктов) и управляемых очень тонкими регуляторными механизмами.

Слово метаболизм или обмен веществ не понаслышке знакомо всем, кто худеет или пытается набрать вес. Под ним принято понимать комплекс протекающих в организме человека процессов химического характера и энергетических реакций. Обмен веществ во многом определяет внешний вид и здоровье человека, длительность и качество жизни.

Любой живой организм, в том числе и человеческий, является сложной химической лабораторией. Вещества, попадающие внутрь при еде, дыхании и прочих процессах, вступают в непрерывное взаимодействие с молекулами и атомами в организме, ввиду чего выделяется необходимая для работы внутренних органов энергия.

Метаболические процессы связаны со следующим:

  • Переработка компонентов, поступающих вместе с пищей;
  • Преобразование их в простые составляющие;
  • Высвобождение из клеток организма отработанных элементов;
  • Насыщение клеток необходимым материалом.

Живой организм не может существовать без обмена веществ. Он позволяет адаптироваться к влиянию различных факторов извне. Мудрая природа сделала этот процесс автоматическим. Обменные реакции позволяю клеткам, органам и тканям быстро восстанавливаться самостоятельно после нарушений и негативных факторов извне. Благодаря метаболизму обеспечивается протекание процессов регенерации. Он делает из человеческого организма крайне сложную высокоорганизованную систему, которая способна саморегулироваться и самосохраняться, принимает участие в дыхательных процессах, в регенерации тканей, размножении, росте и так дальше.

Если разораться в том, что такое метаболизм или обмен веществ простыми словами, то суть его в переработке химических компонентов и превращении их в энергию. Эти процессы состоят из двух стадий, которые между собой:

  • Анаболизм (рост).

Эти два процесса протекают одновременно, но при этом они в корне разные. Катаболизм провоцирует распад пищи, которая попадает в организм, сначала на макронутриенты, а после — на простые компоненты. В результате этого процесса происходит высвобождение энергии, которая измеряется в килокалориях. На базе этой энергии происходит построение молекул для клеток и тканей организма. Анаболизм предполагает синтез простых компонентов в сложные и требует немалых энергетических затрат.

Энергия, высвобождаемая в результате обменных процессов, идет на физическую активность и протекание в организме внутренних процессов. Причем на последние уходит около 80 ее процентов, остальная часть тратится на физическую активность.

Принято выделять также пластический и энергетический обмен веществ. Пластический обмен предполагает процессы, в результате которых в клетках образуются новые структуры и соединения, характерные для организма.

Энергетический обмен — это превращения энергии, в результате которых ввиду биологического окисления выделяется энергия, которая нужна для жизнедеятельности клеток, органов, тканей и организма в целом.

Основной обмен веществ и факторы, которые на него влияют

Что такое основной обмен веществ? Под этим термином понимается количество калорий, которое сжигает организм для поддержания жизнедеятельности. На этот обмен приходится до 75% всех расходуемых организмом калорий. На показатели основного обмена влияют следующие факторы:

  • Пол. У мужчин в равных условиях уровень основного обмена выше, чем у женщин, так как мышечной массы у них больше.
  • Структура тела. Чем больше мышц, тем быстрее обмен веществ. Повышенный процент жира же, напротив, его замедляет.
  • Рост. Чем он выше, тем выше уровень основного обмена.
  • Возраст. Самый высокий уровень обменных процессов у детей, с возрастом он замедляется.
  • Физическая активность. Регулярные занятия спортом помогают сжечь жир и увеличить мышечную массу, что способствует ускорению базового обмена.
  • Питание. Как переедание, так и частые голодания негативно влияют на метаболизм, замедляя его.

Нарушение метаболизма: что это такое

Метаболизм человека оказывает влияние на попадание в его организм всех необходимых компонентов. Нарушения обменных процессов провоцируют различные физиологические расстройства, например, набор веса и ожирение.

У мужчин обменные процессы интенсивнее, нежели у женщин. Разница составляет около 20%. Причина этого в том, что в мужском организм больше мышц и скелета.

Сбои обменных процессов могут провоцироваться рядом факторов: неправильное питание, эндокринные и другие заболевания, вредные привычки, постоянные стрессы, факторы окружающей среды и так далее.

Нарушения метаболизма, как в одну, так и в другую сторону, провоцируют изменения в функционировании организма. Они могут дать о себе знать следующими симптомами:

  • ломкость волос и ногтей, проблемы с кожей, разрушение зубов;
  • постоянный голод или жажда;
  • резкое увеличение либо снижение веса без причины;
  • хронические запоры или жидкий стул.

Эти характеристики могут свидетельствовать не только о нарушении обменных процессов, но и о проблемах со здоровьем, поэтому необходимо обратиться к эндокринологу для обследования и диагностики.

Обмен веществ помимо нормального может быть ускоренным или замедленным. Замедленный метаболизм — что это такое? При этом состоянии организма интенсивность процессов преобразования поступающих в организм питательных компонентов чрезмерно низкая. Ввиду замедления обменных процессов сжигаются не все калории, которые поступают в организм, что провоцирует образование лишнего жира.

Если же говорить об ускоренном метаболизме, то человек в данном случае весит слишком мало, и не может набрать вес даже при интенсивном питании, так как компоненты, которые поступают в его организм, не усваиваются полностью. Казалось бы, что в этом плохого? Тем не менее, человек с такой проблемой может ощущать постоянную слабость, иметь плохой иммунитет и быть слишком восприимчивым к различного рода инфекцией. Нередко причиной такого состояния является тиреотоксикоз — болезнь щитовидной железы.

Как замедлить ускоренный обмен веществ

Таких людей меньше, но, тем не менее, существуют те, для которых быстрый метаболизм — это проблема, когда они не могут набрать вес и сталкиваются с ухудшением здоровья по этой причине. Это состояние тоже не считается нормой, и в определенных случаях обменные процессы нужно замедлять. Для этого используются следующие меры:

  • Для ускорения обмена веществ рекомендуется высыпаться. А вот для его замедления можно спать чуть меньше (но не сильно, поскольку недосып чреват серьезными проблемами со здоровьем). Недостаток сна повышает в организме уровень кортизола, который замедляет метаболизм.
  • Завтракать рекомендуется не сразу после пробуждения, а немного позже, поскольку ранний завтрак активизирует процессы обмена.
  • Кофе бодрит и ускоряет обмен веществ, потому желающим поправиться рекомендуется не слишком им увлекаться
  • Кушать лучше реже и в больших количествах — все ведь знают, что дробное питание ускоряет метаболизм.
  • Такие продукты, как специи, цитрусовые, зеленый чай, белки ускоряют обменные процессы, поэтому налегать на них не стоит.
  • Старайтесь кушать калорийную пищу.
  • Воду пейте не холодную, так как в этом случае организм будет тратить много энергии на ее согревание.

Замедленный обмен веществ: что делать?

Замедление обменных процессов является причиной многих проблем, и это не только лишний вес, но и такие серьезные патологии, как, например, сахарный диабет.

Поэтому важно знать, как его ускорить, и какие методы для этого безопасны. Для разгона метаболизма стоит обратить внимание на следующие рекомендации:

  • Забудьте о голоде и жестких диетах. Все это только замедляет метаболизм. Питаться рекомендуется дробно — часто и небольшими порциями. Именно такой режим помогает разогнать обмен веществ и способствует правильному похудению.
  • Важно высыпаться, поскольку недостаток сна замедляет процессы обмена. Объясняется это тем, что организм, находясь в условиях повышенной нагрузки, начинает экономить силы и замедляет обмен. К тому же недостаток сна также провоцирует выработку гормона стресса, а это тоже оказывает свое негативное влияние.
  • Физическая активность — важное условие нормального обмена веществ. Она помогает увеличить мышечную массу, соответственно, метаболизм ускоряется.
  • Полезны высокоинтенсивные интервальные тренировки. Это идеальный вид активности для ускорения обмена веществ.
  • Силовые нагрузки также полезны, причем не только мужчинам, но и женщинам. Они помогут держать мышцы в тонусе, а организм будет расходовать больше энергии.
  • Рекомендуется минимизировать в рационе продукты, которые замедляют обмен веществ. В основном это простые углеводы, сладости, фаст-фуд и прочие вредности. Поищите для них более полезную альтернативу.
  • Из продуктов, которые ускоряют обменные процессы, стоит выделить белки, зеленый чай, черный кофе, специи, чеснок, а также орехи, семечки, фрукты, овощи, зелень. Эти продукты требуют больших затрат энергии, соответственно, обмен веществ ускоряется.
  • Часто худеющие отказываются от жиров, что является ошибкой, так как недостаток их чреват нарушением метаболизма и серьезными сбоями в организме. Нужно выбирать полезные их источники — растительные масла, авокадо, рыба и так далее.

Теперь вы знаете, что такое обмен веществ, и как его нормализовать. Используя несложные правила, вы сможете сделать это без вреда для здоровья.

О метаболизме на видео


Многие люди говорят о метаболизме как о мышце или органе, который они могут каким-то образом контролировать. В действительности метаболизм - это ряд химических процессов, которые превращают калории из еды в энергию для поддержания жизни, и происходит это в каждой клетке вашего тела.

Ваша скорость обмена веществ в покое, или базальный метаболизм, определяется тем, как много калорий сжигает организм, пока вы ничего не делаете.

Человеческому организму для поддержания собственной жизни требуется энергия в покое - для дыхания, кровообращения и переваривания пищи. У разных видов ткани разные потребности, и для функционирования им требуется разное количество калорий. На жизненно важные органы - мозг, печень, почки и сердце - приходится около половины выработанной энергии. А на жировую ткань, пищеварительную систему и мускулатуру - всё остальное.

2. Больше всего калорий вы сжигаете в состоянии покоя

Ваш организм сжигает калории:

  • в состоянии покоя (базальный метаболизм) - полученная энергия используется для функционирования организма;
  • в процессе усвоения пищи (известный термический эффект);
  • при физической активности.

Согласно исследованиям , большую часть калорий за день вы сжигаете в состоянии покоя при метаболических процессах. На физическую активность, по сравнению с базальным метаболизмом, приходится небольшая часть расхода энергии - от 10 до 30% (если вы не занимаетесь спортом профессионально или ваша работа не требует тяжёлого физического труда). На переваривание пищи тратится порядка 10% энергии.

В среднем на базальный обмен веществ приходится от 60 до 80% от общего расхода энергии. Конечно, это ещё не всё, но в сочетании с затратами энергии на переработку пищи получается практически 100%. Поэтому нет ничего удивительного в том, что физические упражнения приводят к статистически значимым, но небольшим изменениям веса.

Алексей Кравиц, нейробиолог в Национальном институте здоровья

3. Скорость обмена веществ может сильно отличаться у разных людей, и исследователи не понимают почему

Это правда: скорость метаболизма у двух людей одного роста и одной комплекции может очень сильно различаться. Пока один может есть что угодно в огромных количествах и его вес никак не изменится, другому приходится тщательно подсчитывать калории, чтобы не набрать лишних килограммов. Но почему так происходит, сказать наверняка не может ни один учёный: механизм управления метаболизмом не изучен до конца.

Thomas Kelley / Unsplash.com

Однако исследователи обнаружили показатели, которые влияют на скорость обмена веществ: количество мышечной и жировой ткани в организме, возраст и генетика (хотя тоже не совсем понятно, почему в некоторых семьях более высокая или более низкая скорость метаболизма).

Пол также имеет значение: женщины любого возраста и комплекции сжигают меньше калорий, чем мужчины с теми же параметрами.

Легко и точно измерить скорость обмена веществ не получится. Существуют специальные доступные тесты, но вряд ли они гарантируют безукоризненный результат. Для точного измерения необходимо дорогостоящее оборудование, например метаболические камеры.

Чтобы примерно рассчитать скорость метаболизма, можете воспользоваться одним из онлайн-калькуляторов (например, этим). Так вы узнаете, сколько калорий в день вам необходимо потреблять, чтобы вес оставался неизменным.

4. С возрастом обмен веществ замедляется

Это происходит постепенно и с каждым, даже если соотношение мышечной и жировой ткани остаётся прежним. Когда вам будет 60, вы будете сжигать меньше калорий в состоянии покоя, чем в 20 лет. Исследователи отмечают, что постепенное замедление метаболизма начинается в возрасте 18 лет. Но почему потребность в энергии с возрастом снижается, даже если все остальные показатели остаются прежними? Учёные не могут ответить на этот вопрос.

5. Вы не можете значительно ускорить метаболизм для потери веса

Все постоянно говорят о том, как можно ускорить метаболизм, чтобы похудеть: заниматься спортом и наращивать мышечную массу, есть определённые продукты, принимать добавки. Но на самом деле это очень сложно сделать.

Некоторые продукты действительно могут , например кофе, перец чили, острые специи. Но изменение будет настолько незначительным и кратковременным, что не окажет никакого влияния на вашу талию.

Наращивание мышечной массы - более действенный вариант. Чем больше мышц и меньше жира, тем выше скорость обмена веществ. Всё потому, что мышцам требуется больше энергии в состоянии покоя, чем жировой ткани.

Если вы сможете набрать мышечную массу и уменьшить жировые отложения с помощью упражнений, то метаболизм ускорится и вы будете быстрее сжигать калории.

Но это только половина дела. Вам придётся преодолеть естественное желание съесть больше, которое появляется вместе с ускорившимся обменом веществ. Многие люди поддаются чувству голода, которое появляется после тяжёлых тренировок, и в результате наращивают не только мышцы, но и жир. Кроме того, многим сложно даются тренировки, необходимые для поддержания набранной мышечной массы.


Scott Webb / Unsplash.com

Глупо полагать, что вы можете всецело управлять своим метаболизмом. Если вы и способны влиять на него, то в скромных масштабах. И для этого потребуется и упорство.

Ускорить метаболизм непросто, а вот замедлить его намного легче - программами для быстрой потери веса. Диеты оказывают самое сильное влияние на метаболизм, но, к сожалению, не такое, как нам хотелось бы.

В течение многих лет учёные исследовали феномен под названием метаболическая адаптация, или адаптивный термогенез. Когда люди теряют вес, их базальная скорость обмена веществ замедляется, причём довольно значительно. Понятно, что метаболизм должен немного замедлиться, так как похудение включает в себя потерю мышечной массы, тело становится меньше, ему не требуется так много энергии, как раньше. Но исследователи обнаружили, что скорость обмена веществ замедляется в значительно большей степени и этот эффект связан не только с изменением комплекции тела.

В последнем исследовании на эту тему, результаты которого были опубликованы в журнале Obesity , учёные из Национального института здоровья обследовали участников реалити-шоу The Biggest Loser. К финалу шоу все участники скинули много килограммов, поэтому идеально подходили для исследования того, что происходит с организмом при значительной потере веса за короткий промежуток времени.

Учёные изучили ряд показателей - массу тела, жир, метаболизм, гормоны - в конце 30-недельного конкурса в 2009 году и через шесть лет, в 2015-м. Хотя все участники сильно похудели к финалу шоу с помощью физических упражнений и диет, спустя шесть лет их объёмы в значительной степени восстановились. Из 14 участников шоу у 13 человек вес вернулся обратно, при этом четверо конкурсантов стали весить даже больше, чем до участия в шоу.

В течение исследуемого периода метаболизм у участников сильно замедлился. Их организм в среднем сжигал на 500 ккал меньше каждый день, чем можно было бы ожидать, учитывая их вес. Этот эффект наблюдался даже спустя шесть лет, несмотря на тот факт, что большинство участников постепенно набрали потерянные килограммы.

Сандра Амодт (Sandra Aamodt), нейробиолог и автор книги «Почему диеты обычно не работают», объясняет это особой защитной реакцией организма, поддерживающего вес в определённом привычном диапазоне.

После того как вы набираете вес и удерживаете его в течение продолжительного периода времени, организм привыкает к своему новому размеру. Когда вес падает, небольшие изменения на уровне гормонов в мозге замедляют метаболизм. В это же время увеличивается чувство голода и уменьшается ощущение сытости от пищи - складывается впечатление, что организм всеми силами пытается вернуться обратно к ставшему привычным весу.

При исследовании участников шоу The Biggest Loser учёные обнаружили, что у каждого из них понизилась концентрация гормона лептина. Лептин - один из основных гормонов, регулирующих чувство голода в организме. К финалу конкурса The Biggest Loser участники почти полностью опустошили свои запасы лептина и постоянно испытывали чувство голода. За шесть лет их запасы лептина восстановились, но только до 60% от первоначального уровня, который был до участия в шоу.

Большинство людей не представляют, насколько сильными могут оказаться метаболические изменения после потери веса. При увеличении массы и при похудении организм не ведёт себя одинаково. Он гораздо сильнее борется, чтобы удержать снижение веса, нежели остановить увеличение.

Но не всегда похудение приводит к замедлению метаболизма. Например, при хирургических операциях для изменения веса уровень лептина не меняется, как и скорость метаболизма.

Более того, исследование с участниками шоу The Biggest Loser достаточно нестандартное, поэтому не факт, что с подобным эффектом столкнётся большинство других людей. Ведь в исследовании принимали участие только 14 человек, которые теряли вес исключительно с помощью быстрых диет и физических упражнений. Такого эффекта замедления метаболизма не наблюдается при постепенном похудении.

7. Учёные не могут в полной мере объяснить, почему метаболизм замедляется

На этот счёт есть несколько теорий. Одна из наиболее достоверных объясняется ходом эволюции. На протяжении тысячелетий люди эволюционировали в среде, где должны были справляться с частыми периодами недоедания. Поэтому можно предположить, что в ДНК сохранилось много генов, которые способствуют преобразованию лишних калорий в жир. Эта способность помогала человеку выживать в периоды нехватки пищи и размножаться.

Продолжая мысль, можно сказать, что неспособность избавиться от веса сегодня обусловлена защитной реакцией организма, даже несмотря на то, что нехватка еды в нашем обществе стала редкостью.

Но не все учёные согласны с этой теорией экономного гена.

Если бы экономные гены обеспечивали сильное селективное преимущество, позволяя выживать в голод (голодные периоды на протяжении истории случались часто), то экономные гены распространились бы и закрепились во всей популяции. Это значит, что сегодня у всех нас должны быть экономные гены, и тогда современное общество состояло бы исключительно из полных людей. Но даже в обществах, которые больше всего подвержены ожирению, как, например, в США, всегда сохраняется определённое количество людей, в среднем около 20% населения, которые остаются неизменно худыми. И если голод - это обязательное условие для распространения экономных генов, логично спросить, как получилось так, что такому большому количеству людей удалось избежать их наследования.

Джон Спикман (John Speakman), эпигенетик

Учёные также пытаются лучше понять метаболический синдром - так называется комплекс нарушений обмена веществ, включающий повышенные кровяное давление и уровень сахара в крови, большой объём талии и отклоняющийся от нормы уровень холестерина и триглицеридов. Когда у людей наблюдаются такие проблемы со здоровьем, они больше подвержены риску хронических заболеваний, в том числе сердечно-сосудистых и диабета. Но опять же неясно, как действует метаболический синдром и почему одни люди подвержены ему больше, чем другие.

8. Замедленный метаболизм не означает, что вы не сможете сбросить вес

Потеря веса возможна при замедленном метаболизме. В среднем 15% людей с замедленным обменом веществ в клинике Майо сбрасывают до 10% собственного веса и удерживают новый.

Любой человек, желающий похудеть, сможет добиться этой цели, изменив образ жизни. Также важно вносить в него коррективы, которые позволят держать болезнь - ожирение - под контролем.


Carissa Gan / Unsplash.com

В Национальном реестре контроля веса в США исследуются привычки и поведение взрослых людей, которые сбросили по меньшей мере 15 килограммов и смогли удержать этот вес в течение года. В реестр в настоящее время включено более 10 000 участников, которые регулярно проходят ежегодные опросы о том, как им удаётся поддерживать нормальный вес.

Этих людей объединяет несколько общих привычек:

  • они взвешиваются минимум один раз в неделю;
  • регулярно выполняют физические упражнения и много ходят пешком;
  • ограничивают потребление калорий, избегают еды с высоким содержанием жиров;
  • следят за ;
  • завтракают каждый день.

Но все едят совершенно разную пищу, по-разному планируют свой рацион. Поэтому нельзя наверняка сказать, какая диета самая действенная. Главное - следить за калориями.

Кроме того, все люди, которым удалось похудеть, серьёзно изменили свой образ жизни, внимательнее относились к питанию и делали физические упражнения. Конечно, многие бы предпочли думать, что проблемы с весом возникают у них из-за медленного метаболизма или любого другого биологического расстройства, а не потому, что они ленивые и любят поесть. Наука подтверждает: если вы действительно хотите похудеть и готовы прикладывать усилия, у вас всё получится.

Каждому из нас хочется ежедневно баловать себя сладостями и при этом не задумываться об учете углеводов. Но четкое понимание того, к чему приводят лишние калории, останавливает нас от бесконтрольного поедания кулинарных шедевров. Большинство современных людей заботится о своей фигуре. В норму вошли суровые диеты, голодовки. А лишние килограммы при этом не исчезают. Если удается похудеть, достигнутый результат удержать крайне сложно. Причиной этого может являться нарушенный метаболизм.

Что это такое

Метаболизм - это разнообразные химические процессы, которые протекают в межклеточной жидкости и в самих клетках человеческого организма. Такие процессы связаны:

  • с переработкой тех питательных элементов, которые поступают с пищей;
  • с преобразованием их в простейшие мелкие частички;
  • с освобождением клеток от отработанных элементов;
  • со снабжением клеток строительным материалом.

Простейшие мелкие частички, которые образуются из питательных элементов, в состоянии проникать в клетки человеческого организма. При этом они выделяют энергию, необходимую для его нормальной жизнедеятельности.

Если говорить другими словами, то метаболизм - это обмен веществ, который индивидуален для каждого человека. Его неповторимость основана на сочетании различных факторов. Сюда можно отнести генетическую предрасположенность человека, его пол и возраст, вес и рост, мышечную массу, образ жизни, стрессы, влияние окружающей среды, наличие заболеваний щитовидной железы.

Быстрый и медленный метаболизм

Под медленным метаболизмом подразумевают тот обмен веществ в человеческом организме, который протекает с низкой скоростью. Это значит, что за определенный промежуток времени сжигается меньшее число калорий, а процесс преобразования питательных веществ в энергию замедляется. Именно по этой причине замедленные обменные процессы в ситуации с лишним весом приводят к тому, что все калории, которые не подверглись сжиганию, откладываются. У человека на теле появляются заметные жировые складочки, а нижняя часть лица обретает дополнительные подбородки.

Если рассматривать быстрый метаболизм, то при таком типе обмена веществ невозможно набрать оптимальный для себя вес. Человек может употреблять в пищу любые продукты, но это не позволяет ему поправиться. Витамины и полезные элементы, поступающие вместе с едой, не усваиваются. В результате наблюдается нехватка жизненно важных ферментов, отсутствие которых замедляет функционирование главнейших процессов организма. Человек, у которого обменные процессы протекают с высокой скоростью, всегда плохо себя чувствует, его иммунитет ослаблен, что уменьшает устойчивость к сезонным заболеваниям.

Нарушение обмена веществ: причины

Метаболизм - это основополагающий механизм, обуславливающий работу человеческого организма. Если его функционирование нарушается на клеточном уровне, наблюдается повреждение биологических мембран. Вслед за этим человека начинают атаковать всевозможные тяжелые заболевания. Когда нарушение обменных процессов наблюдается во внутренних органах, это приводит к изменению функций их работы, что способствует усложнению взаимосвязи с окружающей средой. В результате ухудшается выработка гормонов и ферментов, которые необходимы организму, что провоцирует тяжелые заболевания со стороны репродуктивной и эндокринной систем.

Нарушение метаболизма часто наблюдается как следствие голодания и изменения режима питания. В первоочередном порядке его жертвами становятся нерационально питающиеся люди. Недоедание так же опасно, как и переедание.

Каждый день в меню должны присутствовать чеснок и лук, брюссельская и цветная капуста, брокколи, морковь, болгарский перец, шпинат.

Ежедневно в рационе должно присутствовать нежирное мясо, которое является источником белка. Например, постная говядина, индейка, курица без кожи, телятина.

Для утоления жажды лучше всего отдавать предпочтение зеленому чаю, сокам из черники, вишни, граната, натуральных овощей.

Ежедневный рацион обязательно должен включать орехи и семечки. Последние должны быть несолеными и нежареными.

В рационе должны присутствовать специи и травы. Например, петрушка, куркума, корица, имбирь, кардамон, базилик, гвоздика.

Тренировка для снижения веса от Джиллиан Майклс

В последнее время особой популярностью среди людей, которые стремятся похудеть, пользуется тренировка от Джиллиан Майклс под названием Banish Fat Boost Metabolism ("Сожги жир, ускорь метаболизм").

В видеоуроке описаны упражнения, которые позволяют избавиться от лишнего веса. Автор этой программы дает подробные инструкции по занятиям, что позволяет с легкостью достичь желаемого результата.

Тренировка Джиллиан Майклс основана на том, что сжиганию жировых клеток способствует кислород. Если поддерживать частоту сердечных сокращений на определенном уровне, то обменные процессы заметно ускоряются. Именно по этой причине основная часть тренировки отводится кардиоупражнениям, которые обеспечивают жировые ткани кислородом. В программе присутствуют упражнения и на растяжку, и силовые. Все они укрепляют мышечный корсет, а фигура буквально после нескольких занятий обретает четкие очертания.

Если принято решение начать тренировки по программе Джиллиан Майклс "Сбрось вес, ускорь метаболизм", нужно запомнить несколько основных правил:

  • занятия должны проходить в обуви, что защитит голеностоп и стопу от возможных травм;
  • тренироваться нужно регулярно (только так можно достичь желаемого);
  • ни в коем случае нельзя сбавлять ритм, который был задан автором тренировки.

Вы давно ищете действенную программу, которая помогла бы избавиться от лишнего веса? Тренировка от Джиллиан Майклс - это то, что вам нужно! Об эффективности программы свидетельствуют многочисленные положительные отзывы.