Клонирование невозможно. Рожать нельзя клонировать

Генные технологии основаны на методах молекулярной биологии и генетики, связанных с целенаправленным конструированием новых, не существующих в природе сочетаний генов . Генные технологии зарождались в начале 70-х годов как методы рекомбинантных (заново сконструированных) ДНК, названные генной инженерией . Современные генные технологии объединяют химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывают новые пути решения многих проблем биотехнологий, медицины, сельского хозяйства.

Основная операция генной технологии заключается в извлечении из клеток организма гена, кодирующего нужный признак, и дальнейшее его соединение с молекулами ДНК, способными размножаться в клетках другого организма. Основная цель генных технологий видоизменить ДНК , закодировав ее для производства белка с заданными свойствами. Генные технологии привели к разработке современных методов анализа генов и геномов, к синтезу, то есть к конструированию новых, генетически модифицированных организмов (ГМО).

На основе генной инженерии возникла новая отрасль фармацевтической промышленности – микробиологический синтез, с помощью которого получены инсулин, интерферон и другие лекарства, интенсивно используемые в лечебной практике. Генные технологии производства вакцин развиваются в двух основных направлениях. Первое – улучшение уже существующих вакцин и создание комбинированных, состоящих из нескольких вакцин. Второе направление – получение вакцин против таких болезней, как СПИД, малярия, язвенная болезнь желудка и других.

Генная инженерия позволила оплодотворить яйцеклетку in vitro, т. е. в искусственных условиях (в пробирке), а затем имплантировать зародыш в матку. В этом состоит метод экстракорпорального оплодотворения (ЭКО), который широко используется во всем мире.

С помощью молекулярных проб (фрагментов ДНК с определенной последовательностью нуклеотидов) можно определить, заражена ли донорская кровь вирусом СПИДа. А генные технологии для идентификации некоторых микробов позволяют следить за их распространением, например, внутри больницы или при эпидемиях.

Проводится целенаправленная работа по генетической модификации свойств микробов, используемых в производстве хлеба, молочной промышленности, пивоварении и виноделии с целью увеличения устойчивости производственных штаммов, повышения их конкурентоспособности по отношению к вредным бактериям и улучшения качества конечного продукта.

Однако при всех положительных результатах нельзя однозначно утверждать, что широкое практическое внедрение генных технологий не приведет к появлению новых заболеваний и других нежелательных последствий. В связи с этим все виды работ с микроорганизмами строго регламентированы, и цель таких ограничений – снижение вероятности распространения инфекционных агентов. ГМО не должны содержать генов, которые после их переноса в другие организмы могут дать опасный эффект.

Развитие генных технологий в конце XX века привело к появлению клонированных существ. Клонирование – это точное воспроизведение живого объекта в каком-то количестве копий. Клон представляет собой генетическую копию организма - донора соматической (телесной) клетки. Особенность соматической клетки - двойной набор хромосом, тогда как в половой клетке родителя только половина необходимых для развития клетки хромосом. Таким образом, клонирование относится к размножению посредством партеногенеза – бесполому размножению. Случаи подобного размножения встречаются в природе – это однояйцевые близнецы (не двойняшки). Этот достаточно редкий феномен (около 0,5 % от всех родов) возникает благодаря разделению оплодотворенной яйцеклетки на два бластомера, которые впоследствии развиваются самостоятельно.

В XX веке было проведено немало удачных экспериментов по клонированию животных, но все они были выполнены с помощью переноса ядер эмбриональных (недифференцированных или частично дифференцированных) клеток. При этом считалось, что получить клон с использованием ядра соматической (полностью дифференцированной) клетки взрослого организма невозможно. Однако в 1997 г. британские ученые объявили об успешном сенсационном эксперименте: получении живого потомства (овечка Долли) после переноса ядра, взятого из соматической клетки взрослого животного (донорской клетке более 8 лет). Недавно в США (универсистет в Гонолулу) были проведены успешные эксперименты по клонированию мышей. Таким образом, современная биология доказала, что получение клонов млекопитающих принципиально возможно. В средствах массовой информации заговорили об ошеломляющих перспективах клонирования, в первую очередь для животноводства. Особо острые дискуссии развернулись вокруг проблемы клонирования человека, что принципиально выглядит вполне выполнимым проектом.

Полученные данные заставили по-новому посмотреть на процесс клеточной дифференциации. Оказалось, что этот процесс обратим, и цитоплазматические факторы способны инициировать развитие нового организма на основе генетического материала ядра сформированной, полностью дифференцированной клетки. Можно сказать, «биологические часы» пошли вспять: развитие организма вновь может начинаться из генетического материала соматической клетки взрослого организма. Появление овечки Долли открыло новые перспективы для решения проблем геронтологии (старения организма).

Вместе с тем ученые очень осторожно относятся к перспективам клонирования, указывают на ограниченности этого метода исходя из закономерностей молекулярной генетики.

Во-первых, длительность жизни клонированного организма не будет равна времени жизни обычного организма, сформировавшегося из половых клеток, а в любом случае меньше ее (с учетом возраста донорского организма); так, овечка Долли умерла в 2003 г., прожив чуть более 5 лет, тогда как «естественные» овцы живут 14-15 лет. Предположительно, это произошло потому, что хромосомы соматической клетки значительно короче хромосом половых (зародышевых) клеток.

Во-вторых, клонированный организм будет нести на себе груз генетических мутаций донорской клетки, а значит, ее болезни, признаки старения и т.п. Следовательно, онтогенез клонов не идентичен онтогенезу их родителей: клоны проходят другой, сокращенный и насыщенный болезнями жизненный путь. Можно утверждать, что клонирование не несет омоложения, возврата молодости, бессмертия. Таким образом, метод клонирования нельзя считать абсолютно безопасным для человека.

В-третьих, клон человека не будет иметь жизненный и социально-культурный опыт донора клетки, и, значит, не является его полной копией.

Вообще, что же такое человеческий клон? С одной стороны, он может быть назван ребенком своего родителя. С другой стороны, он же одновременно является и чем-то вроде однояйцевого генетического близнеца своего родителя. Это рождает целый ряд моральных и юридических проблем.

Юристам необходимо будет определиться в следующем: должен ли обладать человеческий клон всеми правами человека и гражданина; кто должен считаться его родителями, раз в его появлении на свет участвуют три особи: донор клетки, донор яйцеклетки и суррогатная мать; нужно ли в связи с этим, а если нужно, то в каком направлении, пересматривать соответствующие разделы конституционного, гражданского, семейного и наследственного права, в частности, какие (родительские) права (и обязанности) имеют «вкладчик генетического материала», донор яйцеклетки, суррогатная мать? Вполне возможно, что юристам придется рассмотреть и вопрос о праве собственности на свою ДНК - ведь клетки могут быть взяты без согласия человека.

Юридическая сторона проблемы запутывается еще больше, если к этому добавить, что, по-видимому, нет принципиальных препятствий клонированию человека от клеток умершего человека. И тогда возникают еще вопросы: кто имеет право распоряжаться генетическим материалом умершего для последующего его клонирования; может ли индивид, чьи клетки были клонированы после смерти, считаться отцом (матерью)?

Кроме того, при клонировании человека необходимо принимать во внимание еще целый ряд аспектов. Клонирование человека может привести к коммерциализации ДНК, созданию детей с целью получения донорских органов, к осуществлению попыток создания «высшего класса» человеческих существ. В этом состоит биоэтический аспект проблемы клонирования.

Моральный аспект данной проблемы заключается в создании угрозы человеческому достоинству и личной неприкосновенности, утрате личной индивидуальности и неповторимости. Социальный аспект: при клонировании человека нарушаются важнейшие связи между личностями (кровное родство, материнство и отцовство); возникает вопрос о роли семьи в обществе клонов и опасение, что клоны «нормальными» людьми не будут восприниматься как люди. Не следует забывать и об ущемлении чувств верующих – часть проблемы религиозного плана.

Таким образом, для проведения дорогостоящих экспериментальных работ по клонированию человека в настоящее время нет ни естественнонаучной, ни нравственно-правовой базы. Не случайно многие общественные организации заявляют о неприемлемости любых попыток клонирования человека, а ООН готовит международное соглашение о запрете клонирования человека.

И все же процесс познания мира остановить невозможно. Очевидно, что исследования в области эмбриологии и клонирования человека очень важны для медицины, понимания путей достижения здоровья человека. Поэтому они должны проводиться. Сопутствующие клонированию научные знания могут быть уже сейчас полезными в решении многих медицинских проблем (лечение бесплодия, клонирование тканей и органов человека для создания банка донорских органов с целью продления его жизни). Непосредственное же клонирование человека (вплоть до обстоятельного уточнения правовых, этических и других аспектов этой проблемы) пока, по-видимому, неприемлемо.

На сегодняшний день, когда уже очевидно, что вот так взять и быстро наштамповать армию клонов — одинаковых недочеловеков — не получится, ситуация с клонированием человека, так сказать, утряслась. Особых сенсаций ждать не приходится, но всё же...

Признаться, ошиблись мы в декабре 2001 года, предположив, что первый клон человека появится через 9 месяцев. И хотя это рискованное предположение мы впоследствии убрали, это не помешало читателю спросить в форуме : «9 месяцев прошли. Уважаемая редакция, где обещанный человек?» Действительно, и где?

Вкратце, положение дел таково, что теперь информация о клонировании условно делится на три потока. Первый — учёные отстаивают перед властями возможность клонирования стволовых клеток во имя будущего медицины. Тут есть интересные моменты.

Второй — опальная тройка учёных, засекретивших всё по самое не хочу, делает из недр своих тайных лабораторий заявления, вроде «первый клон человека вот-вот родится». Верить им особо никто не верит, но выслушивают с тревожным интересом.

Третье направление — довольно разношерстное и, пожалуй, местами скучноватое: специалисты предупреждают, спорят или выносят вердикт, что, мол, безнадёжно всё это клонирование, невозможно, но неизбежно. В № 3 не обходится без разнесчастной овечки Долли на фоне клонов, которые мрут, как мухи .

— Доктор Белчмен обвиняется в клонировании человека. Каков вердикт жюри? — Невиновен.

Над всеми этими тремя потоками парит, размахивая крыльями, так называемый этический вопрос, состоящий из: «Нельзя выращивать человека, как растение», «Нельзя выращивать клонов на убой, разбирая их на части», «Клонирование — уничтожение генофонда», «Клоны будут монстрами, уродами, а также недочеловеками, рабами и так далее». Вот именно — и так далее.

В обыденном сознании, меж тем, сохраняется представление, что теоретически можно, как в «Star Wars: Attack of the Clones» — в кратчайшие сроки наклепать не задумывающихся подчинённых, бесстрашных и одинаковых.

Обывателей не смущает и тот факт, что даже учёные-экстремалы из направления №2 упоминают о женщинах-добровольцах, которые, якобы, вынашивают клонов точно так же, как обычных детей. Так же, как обычно, опять же якобы, они собираются этих клонов рожать. Прямо искусственное оплодотворение какое-то — и всё, собственно. Причём, в тайне же — не проверишь, не измеришь.

Далее по порядку. Итак, первый пункт — выращивание стволовых клеток, прогресс в медицине и науке. Тут ни о каком клонировании человека речи нет — наоборот, учёные стараются максимально дистанцироваться от этой горячей темы. Но камнем преткновения стали эмбриональные клетки под предлогом, что нельзя и всё. Нельзя.

Больше всего шума — в США, где президент Буш строго-настрого наказал эмбрионов, какими бы безнадёжными они ни были, не трогать. Есть, говорит, альтернативные способы — плацента, пуповина или что там ещё — вот берите это и работайте со своими стволовыми клетками на здоровье. Буш — он вообще ведь против всего клонирования. От греха подальше.

Сенатор Дебора Ортиз решила пойти наперекор политике Буша.

Американские учёные сперва покорно приняли директиву и стали экспериментировать с разрешённым материалом, но только плохо стало как-то получаться — не годится, нужны эмбриональные. Но закон суров и, значит, пошла из Америки утечка мозгов: не желающие останавливаться на достигнутом, лишённые господдержки учёные устремились из США туда, где можно и где деньги. В Бомбей, к примеру.

Но 8 октября 2002 года, согласно сообщению АВС , сенатор-демократ от Калифорнии Дебора Ортиз (Deborah Ortiz) не выдержала и бросила вызов президенту Соединенных Штатов непосредственно перед государственным собранием: «Мой закон освобождает Калифорнию от действия политики Буша в отношении исследований стволовых клеток».

Не так-то часто сенатор возражает президенту, но тут ситуация особая: три года назад Дебора Ортиз потеряла мать, которая умерла от рака, так что борьбу с онкологическими заболеваниями сенатор считает делом своей жизни.

Короче говоря, по законопроекту Ортиз, штат Калифорния, наплевав на запреты Буша, начинает финансово поддерживать исследования стволовых клеток, и власти трёх-четырёх штатов готовы последовать этому примеру. Разумеется, там дебаты, конференции и так далее. Вот.

Теперь поговорим об опальных клонмейкерах, которых, как общеизвестно, у нас трое: Панайотис Завос (Panayiotis Zavos), Северино Антинори (Severino Antinori) и Бриджитт Буаселье (Brigitte Boisselier). Того же 8 октября 2002 года об их деятельности поступил ряд сообщений. Вот, к примеру, это .

RMX2010 — машина для клонирования компании Clonaid.

На этот раз смысл такой, что первый клонированный человек у них, значит, появится на свет либо в конце 2002-го, либо в начале 2003-го.

Больше других выступает Буаселье, директор компании Clonaid . У нас, говорит, с марта 2002 года женщины лежат с клонированными эмбрионами, причём несколько беременностей вполне жизнеспособны.

Ещё у Clonaid имеется чудо-клономашина — RMX2010 .

Надо сказать, что с Буаселье вообще тяжёлый случай: она состоит в секте Raelian cult, считающей, что люди появились в результате экспериментов по клонированию, которые проводили инопланетяне, а так же уверовавшей в то, что посредством клонирования был возрождён Иисус. Таким образом, Clonaid мало кто воспринимает всерьёз.

Бриджитт Буаселье обещает воспроизвести клон человека максимум в начале 2003 года.

Что же касается оставшихся двух — Завоса и Антинори, то по информации испанской газеты El Mundo, которую приводит InoPressa , они находятся в постоянном контакте друг с другом и Буаселье, в то же время, стараясь обеспечить максимальный уровень секретности своих работ.

В начале октября 2002-го Завос объявил, что возглавляемая им группа учёных проведёт первую имплантацию женщине клонированного эмбриона в конце года: «Я не Франкенштейн и не собираюсь создавать монстров, — подчеркнул Завос.

— Если мы решим подождать, наверняка за нас это сделают другие. Делая шаг вперёд, мы будет действовать максимально осторожно. Могу вас заверить, что в моей группе работают Майклы Джорданы в области клонирования».

Ну да, а также Жоресы Алфёровы в области баскетбола. А итальянец Северино Антинори, тем временем, отмалчивается. Говорят, работает. В общем, ждём вестей и новых обещаний — так что ли?

Все трое опальных клонмейкеров вместе. Слева направо: Антинори, Завос, Буаселье.

По третьему направлению с условным обозначением «Разное» необходимо отметить сообщение от 10 сентября 2002 года. Напомним его: учёные из Центра по исследованию генома института биомедицинских исследований Уайтхеда в Кембридже (Center for Genome Research at the Whitehead Institute for Biomedical Research in Cambridge) пришли к выводу, что в результате клонирования животных почти всегда получается существо с теми или иными отклонениями.

Таким образом, исследование, по их мнению, с небывалой ясностью выявило, что воспроизведение людей путём клонирования — крайне неудачная идея.

Рудольф Джениш (Rudolf Jaenisch) и его коллеги в ходе Слушаний в Национальной академии наук США (Proceedings of the National Academy of Sciences) сообщили, что процесс клонирования подвергает опасности целостность генетической структуры животного.

Были изучены 10 тысяч генов, что стало самым масштабным исследованием в данной области. Выяснилось, что в плацентах клонированных мышей в одном гене из каждых 25-ти имеются отклонения от нормы.

Обложка книжки, которую можно купить через сайт Clonaid за $19,95.

Менее серьёзным генетическим изменениям подверглась печень клонированных мышей. Всё это говорит о том, что клонам, так или иначе, угрожают пневмония, проблемы с печенью, быстрое старение и преждевременная смерть — такие результаты могут стать последним гвоздём, забитым в крышку гроба потенциального клонирования человека.

Учёные сообщили: их исследование доказывает, что независимо от того, насколько нормальным клонированное животное появилось на свет, в будущем проблемы со здоровьем будут расти как снежный ком. Таким образом, клонирование с целью создания человека очень опасно и неэтично.

В приведённом выше сообщении, вылившемся, кстати, в , думается, содержится и ответ упоминавшимся обывателям: клоны не могут быть точной копией того, чьи клетки были использованы.

Гвоздём в крышку гроба — не гвоздём, но 10 сентября 2002 года один из «отцов» Долли Алан Колмэн (Alan Colman), встречаясь с членами Ассоциации зарубежных корреспондентов (Foreign Correspondent Association), сообщил, что клонирование человека неизбежно — рано, говорит, или поздно, но клонируют, вот увидите.

Северино Антинори пока воздерживается от сенсационных заявлений, которых он, впрочем, и так сделал уже немало.

При этом Колмэн, конечно же, не забыл упомянуть, что у Антинори и компании ничего не выйдет, однако: «Без сомнения, есть группы учёных по всему миру, которые при наличии нужных денег осуществят клонирование человека. На мой взгляд, есть и люди, имеющие много денег, у которых хватит ума, чтобы обеспечить деньгами такой проект».

Кому интересно — вот отчёт о встрече корреспондентов с Колмэном. Теперь давайте попробуем суммировать, что мы имеем на сегодняшний день в отношении клонирования человека. Получается, что-то среднее между невозможностью и неизбежностью — как и раньше.

Некоторым процесс клонирования представляется именно так.

Представим, что какую-нибудь Буаселье или неважно кого покажут нам по телевизору с новорожденным на руках и скажет она: «Вот он — первый клонированный человек!»

И что? Ей, само собой, не поверят, затребуют ребёнка на исследование.

Если отдаст, будут этого «клона» мурыжить до последнего, и если не сведут его в могилу экспериментами, то скончается он, прости Господи, от инфекции какой — кто знает, что там с санитарией в секретных лабораториях.

Тем более, что сообщению о повреждённых генах у клонов нет особых оснований не верить — но тут понадобятся, возможно, годы.

И потом мы, блин, помним, чем бывает первый блин...

История клонирования.

История клонирования живых существ берет свое начало с 1839 года, именно в этом году Теодором Шванном была создана клеточная теория, которая произвела настоящий переворот в области генетики. Основная идея клеточной теории - любая клетка происходит от клетки. Два противоречащих положения теории – наследственность и дифференциация. Долгое время ученые не могли выяснить, какие клетки образуются в процессе деления – идентичные дочерние или производные разные. Неудачи не останавливали ученых, эксперименты продолжались. И в 1883 году немецким цитологом Оскаром Гертвигом была открыта яйцеклетка. В 1892 году Ганс Дрейш проводит эксперимент по разделению двухклеточного эмбриона морского ежа на две отдельные клетки, а затем ему удалось разделить четырехклеточный эмбрион морского ежа на четыре отдельных клетки. Ученому удалось вырастить каждую отдельную клетку в нормальную особь.

После этого эксперимента многие ученые также провели ряд успешных экспериментов, направленные на разделение клеток эмбрионов и выращиванию из разделенных клеток отдельных особей. Но при проведении исследования по развитию нематод были получены противоречивые результаты:

1. Чаще всего наблюдался регулятивный тип развития, т.е. после деления клетки имели различные «судьбы»;
2. В других случаях клетки развивались по мозаичному типу.

Что такое регуляционное и мозаичное развитие?

Регуляция в генетике – это восполнение в развитии каждой клетки ее утерянной части. Так, у многих позвоночных организмов, в том числе и у человека, при раннем полном распаде оплодотворенной, начавшей делиться клетки на части (бластомеры), может образовываться совершенно новый организм. Это происходит в случае определенного сбоя в развитии, при этом части клетки не погибают, а дают жизнь новому организму. Образовавшийся эмбрион не является дефективным, а представляет собой полноценный организм. Ярким примером природного регулятивного развития является рождение однояйцовых близнецов, каждый из которых является самостоятельным организмом, но при этом они имеют одинаковую наследственность.

Ученые считают, что для относительно крупных организмов, дающих не очень много потомства, такое положение дел будет иметь свои плюсы. Но было замечено, что неблагоприятные последствия возникают для небольших организмов (например, некоторых членистоногих). В результате разделения клеток эмбриона на раннем этапе развития развиваются самостоятельные организмы, но они имеют определенные дефекты, например, у них может отсутствовать какой-либо участок тела. Это развитие получило название мозаичное. Ученые считают, что, используя принципы мозаичного развития, можно корректировать организм. Было выявлено, что носителем наследственности является ядро, несущее определенное количество хромосом. Ученые переключают свое внимание с клеточного потенциала на ядерный потенциал. Так Ганс Спиман продолжил свои эксперименты, но экспериментировал уже с пересадкой ядра у амфибий и у морских ежей. Он брал для эксперимента эмбрион из 16 клеток, извлекал одно из ядер и помещал его в зародышевую цитоплазму. В результате слияния ядра с цитоплазмой образовывался вполне нормальный эмбрион. Почему он брал эмбрион из 16 клеток? Результаты эксперимента показали, что потенциал ядер остается неизменным, именно до образования 16 клеток. Уже в то время Ганс Спиман задумал эксперимент о пересадке ядра клетки отдельной взрослой особи в отдельную яйцеклетку, но еще не было достаточных знаний и технических возможностей для осуществления подобного эксперимента. Идея Спимана была осуществлена позже другими учеными.

В России опыты по клонированию живых существ начались в 40-е годы 20-го столетия. Первые эксперименты были проведены эмбриологом Г.В. Лапашовым, в основе которых находился метод трансплантации (пересадки) ядер клетки в яйцеклетку лягушки. Программа «Клонирование млекопитающих» стояла в плане совместной работы двух лабораторий, Л.И. Корочкина и Д.К. Беляева. Начинания советских ученых первоначально хорошо финансировались, но вскоре государство потеряло интерес к этому вопросу.

В конце 80-х годов за рубежом генетические опыты стали проводиться с завидной регулярностью. В 1977 году ученые Оксфордского университета под руководством профессора зоологии Дж. Гердона методом клонирования получили более 50 лягушек. Метод клонирования состоял в том, что из яйцеклетки удалялось ядро и в нее трансплантировались разные ядра из специализированных клеток. В более поздних экспериментах Гордон пытается пересаживать ядра из клеток взрослого организма. Несколько экспериментов привели к тому, что особи проходили «стадию метаморфозы» и превращались во взрослых лягушек, но до полного успеха было еще далеко, так как лягушки рождались очень слабыми, практически не приспособленными к дальнейшему существованию.

Первое успешное оплодотворение в пробирке было проведено в 1943 году, но эксперимент закончился неудачей, через какое-то время эмбрион погиб. Но это не остановило ученых, исследования и эксперименты продолжились, и уже в 1978 году в Англии родился первый ребенок «из пробирки»: это была девочка. Ребенок родился у первой в мире суррогатной матери; зачат ребенок был из донорской яйцеклетки, женщина только выносила ребенка. После этого эксперимента стало ясно, что ребенка может выносить и родить не только его биологическая мать.

В 1987 году ученым из университета имени Дж. Вашингтона после проведения определенных генетических исследований удалось с помощью специального фермента разделить клетки человеческого зародыша, которые были клонированы до стадии 32 клеток.

В 1984 году в лаборатории Стена Вилладсена родился первый клонированный ягненок. Он был получен из эмбриональных клеток несозревшей овцы. Впоследствии в своих экспериментах ученый использовал кролика, козу, обезьяну, свинью и корову. Основой метода было изъятие ядра и перемещение его в яйцеклетку.

В 1994 году Неаль Ферст успешно провел клонирование более зрелых эмбриональных клеток: был клонирован эмбрион теленка, состоящий из 120 клеток. Метод клонирования был таким же, как и у Стена Вилладсена: изъятое ядро пересаживалось в яйцеклетку.

В 1996 году Ян Вильмут повторил опыт Неаля Ферста, но клонировал он не теленка, а овцу. В эксперименте было использовано 270 яйцеклеток, из них только одна дала жизнь новому организму. Впоследствии эмбрион был имплантирован в матку овцы.

Через некоторое время в институте Рослин в Эдинбурге родилось первое клонирование животное, овца Долли. 27 февраля 1997 года на обложке журнала «Nature» появилась первая фотография клонированной овцы. Но уже в июне 1999 года основными темами на встречах ученого мира становятся жизнь и развитие первого клонированного животного – овцы Долли. Были выявлены серьезные нарушения в развитии животного: обнаружены аномалии в хромосомах, вследствие чего организм овцы уже при рождении был биологически преждевременно состарившимся. В начале февраля 2000 года в СМИ появились первые сообщения о том, что овца Долли на самом деле не клонированное животное. Под сомнение был поставлен сам метод создания клонов. 14 февраля 2003 года овца Долли погибла: у животного развилась опухоль легких. По некоторым данным, Долли успела дать потомство. Шесть ягнят появились на свет естественным путем.

Клонирование животных.

Как мы уже знаем, целью клонирования является получение потомства, генетически идентичного той особи, ядро которой было взято для клонирования. Как известно, ядро клетки содержит код ДНК, определяющий основные характеристики всего живого, как растений, животных, так и человека. Помимо этого, ДНК, содержащаяся в митохондриях клетки, является совершенно самостоятельной и зависит от хромосомной ДНК.

Клонирование овцы Долли. В случае с овцой Долли клетки были взяты из тканей вымени взрослой овцы и выращены в среде с 0,5% сыворотки. Ученые пришли к выводу, что эта среда остановила рост клеток на стадии готовности, в результате чего активизировались все гены, клетки стали полностью задействованы. Под воздействием электрических импульсов эти клетки смешались с неоплодотворенными яйцеклетками, из которых предварительно были удалены ядра. В особой среде клетки достигли необходимой стадии развития, и эти эмбрионы вживили в матку уже другой овцы. При проведении эксперимента, смешивания клеток овцы с яйцеклетками было получено 277 соединенных клеток, только 29 из них развились до стадии бластоцита. 29 зародышей вживили в матки 13 овец, но родился только один живой ягненок. Такой низкий результат был получен по той причине, что для клонирования использовались клетки взрослого животного.

Процесс выращивания донорских клеток – это долгий и сложный процесс, донорская клетка выращивается в нескольких средах. Помимо этого, в данном случае необходимо особым образом вырастить измененную яйцеклетку-реципиент и дождаться окончания необходимого срока беременности. Более удачные результаты достигаются, когда в качестве донорских клеток берутся зародышевые клетки (или клетки плода). Однако до тех пор, пока животное не достигнет зрелости, невозможно точно определить, какая особь наиболее подходит для донорских целей. Если бы процент удачных результатов был достаточно высоким, данный метод мог бы существенно облегчить работу животноводов. Генетический набор клонов несколько отличается от генетического набора животного, ядра клеток которого были вживлены в яйцеклетки с удаленными ядрами. Опыты с овцами показали, что можно взять клетки здорового животного и в результате клонирования получить животное с мясом и шерстью идеального качества.

Клонирование лягушек.

Большой вклад в область клонирования животных внес Дж. Гордон. Ученый разработал собственную методику удаления ядер из яйцеклеток: он стал использовать ультрафиолетовые лучи. Также он стал удалять из яйцеклетки собственное ядро и трансплантировать в нее разные ядра, взятые из специализированных клеток. Так в 1962 году Гордон в качестве донора ядер использовал не зародышевые клетки, как это было до него, а уже вполне сформировавшиеся клетки эпителия кишечника плавающего головастика.
Гордон добился следующих результатов:

Примерно из 10% реконструированных яйцеклеток образовались эмбрионы; оставшиеся 90% вообще не развивались;

65% из образовавшихся эмбрионов достигали стадии бластула, 30% - стадии головастика и только 5% развивались в половозрелых особей.

В последующих опытах Гордон и его последователи не смогли подтвердить данные этих первых опытов. Гордон объясняет свои прошлые успехи тем, что появление взрослых особей может быть связано с тем, что среди клеток эпителия кишечника получившегося головастика довольно длительное время присутствовали первичные половые клетки, ядра которых могли быть использованы для пересадки. Гордон пытался несколько раз повторить свой эксперимент, принимая во внимание прошлые неудачи, он решил попробовать извлечь ядра на стадии бластулы и снова пересадить их в новые энуклеированные яйцеклетки. Эту процедуру назвали серийной пересадкой. Используя подобную методику, ученому удалось увеличить число зародышей, которые развивались нормально до более поздних стадий по сравнению с зародышами, полученными в результате первичной пересадки.

Гордон проводил свои опыты и совместно с Ласки, в которых ученые попытались вырастить клетки почек, легких и кожи взрослых животных вне организма в питательной среде. Эти клетки ученые решили использовать в качестве доноров ядер. В результате подобного эксперимента около 25% первично реконструированных яйцеклеток развивались до стадии бластулы. Также было проведено несколько серийных пересадок, в результате яйцеклетки развивались до стадии плавающего головастика. Благодаря этим исследованиям стало ясно, что клетки различных тканей взрослого позвоночного содержат ядра, которые могут обеспечить развитие, по крайней мере, до стадии головастика.

Диберардино и Хофнер продолжили дело Гордона, но проводили опыты над эритроцитами – дифференцированными клетками крови лягушки. Они применяли серийную пересадку этих ядер, в результате чего около 10% реконструированных яйцеклеток достигали стадии плавающего головастика. Была проведена еще серия экспериментов с помощью многократных серийных пересадок (более 100 клеточных циклов) реконструированным яйцеклеткам, но дальше стадии головастика развитие не пошло. Последние эксперименты в области генетики показали, что в случае с амфибиями донорами ядер могут быть лишь зародыши на ранних стадиях развития, потому, как считают некоторые авторы, такие эксперименты правильнее было бы назвать клонированием именно зародышей амфибий, а не просто амфибий.

Опыты с амфибиями также показали, что ядра различных типов клеток одного и того же организма генетически идентичны. В процессе клеточной дифференцировки такие ядра постепенно утрачивают способность обеспечивать развитие реконструированных яйцеклеток, однако серийные пересадки ядер и культивирование клеток вне питательной среды в определенной степени увеличивают эту способность. Клонирование амфибий с каждым последующим экспериментом проходило все успешней, и ученые всерьез задумались об экспериментах по клонированию эмбрионов млекопитающих, а именно мышей.

Клонирование мышей.

Необходимые разработки по клонированию млекопитающих уже были и вскоре опыты по клонированию млекопитающих действительно начались, но они проходили не так успешно, как в случае с амфибиями. Исследования были осложнены тем, что объем яйцеклетки у млекопитающих примерно в тысячу раз меньше, чем у амфибий. Но вскоре ситуация изменилась, ученые научились микрохирургически удалять ядро из оплодотворенных яйцеклеток мыши и пересаживать в них клеточные ядра ранних эмбрионов. Полученные зародыши мышей развивались лишь до стадии бластоциты.

МакГрат и Солтер значительно усовершенствовали методы извлечения ядер и разработали собственную методику введения их в клетку. После многочисленных экспериментов они пришли к выводу, что в качестве доноров ядер необходимо использовать оплодотворенные яйцеклетки (зиготы), только благодаря этому можно добиться получения эмбрионов. В иных случаях реконструированные яйцеклетки развивались только до стадии бластоциты.
Манн и Ловел-Бадж начали свои генетические опыты с того, что пытались выделить пронуклеусы - ядро (мужское, женское) оплодотворенной яйцеклетки из яиц, активированных к партеногенезу (развитие особи с участием только материнских генов), и пересадить их в энуклеированные зиготы мышей. Подобные опыты не удались – эмбрионы погибали на ранних стадиях. Ученые стали получать пронуклеусы из оплодотворенных яиц и пересаживать их в партеногенетически активированные и лишенные ядра яйца. В этом случае зародыши развивались нормально до самого рождения.

Сурани проводя эксперименты, установил, что нормальное развитие обеспечивает только рекомбинации мужского и женского пронуклеусов из разных оплодотворенных яйцеклеток мышей. И наоборот, комбинация 2 мужских или 2 женских пронуклеусов приводят к остановке развития эмбриона, т.е. для нормального развития млекопитающих требуется 2 набора хромосом – отцовский и материнский.

Хоппе проводя генетические исследования, пытался пересадить ядра клеток партеногенетических бластоцит мышей в энуклеированные зиготы. Опыты закончились успешно, ученому удалось получить 4 взрослые самки. Хоппе пришел к выводу, что партеногенетические и андрогенетические зародыши у млекопитающих погибают вследствие различия активности онтогенеза материнского и отцовского геномов. Он ввел новый термин «геномный импринтинг», обозначающий механизм, который отвечает за регулировку этих функциональных различий. В результате своих опытов Хоппе получил 3 взрослые особи, которые являлись генетически идентичными донорской линии. По мнению ученого, чтобы результаты опыта были положительными, необходимо за один прием провести введение ядер-доноров и удаление пронуклеусов из зиготы. После этого реконструированные яйцеклетки следует выращивать вне питательной среды до стадии бластоциты, а затем пересадить в матку самки. Результат эксперимента: из 16 пересаженных бластоцит 3 развились во взрослых животных. В последующих опытах Хоппе в качестве доноров ядер использовал клетки эмбрионов на еще более поздней стадии (7 суток), результат – 3 взрослых особи мышей.

Другим долго не удавалось повторить опыт Хоппе. В научных журналах появились статьи, что ученый фальсифицировал результат. МакГрат и Солтер продолжили генетические опыты и в скором времени они пришли к выводу, что ядра 8-ми клеточных зародышей и клеток внутренней клеточной массы бластоциты не обеспечивают развития вне питательной среды реконструированных яйцеклеток. В этом случае, по мнению ученых, клетки сложно вырастить даже до стадии морулы (эмбрион на начальной стадии развития, образующийся в результате дробления зиготы), а уж тем более до стадии бластоциты. Лучшим результатом может быть развитие 5% ядер 4-х клеточных зародышей до стадии морулы. При этом около 19% реконструированных яйцеклеток, содержащих ядра 2-х клеточных зародышей, смогли достичь стадии морулы или бластоциты. Ученые сделали вывод, что в связи с очень ранней активизацией генома зародыша (на стадии 2 клеток) в эмбриогенезе у мышей клеточные ядра рано теряют тотипотентность. У крупных млекопитающих активация первой группы генов в эмбриогенезе происходит намного позже, на 8-16 клеточной стадии. Именно этим ученые объясняют трудности при клонировании мышей.

Клонирование коров.

В 2004 году бразильские ученые заявили об успешном эксперименте по клонированию коровы. Корова появилась на свет благодаря использованию генетического материала другого клона. Клонированная корова по кличке Виторьоза являлась точной копией другой коровы по кличке Витория, которую клонировали около 3 лет назад. Независимые эксперты провели исследование, по результатам которого стало ясно, что у коровы Витории ученые взяли немного кожи с уха через год после ее рождения. Затем клетки, содержащиеся в этой коже, использовали для клонирования.
Опыт бразильских ученых решили повторить ученые из Аргентины, но не ради научного эксперимента, а с целью улучшения качества и увеличения количества, получаемых от коров молока и мяса. Были проведены необходимые эксперименты, первый клонированный теленок должен был появиться на свет в начале 2001 года, но сведений от ученых о завершении эксперимента не поступило.

В 2003 году в китайской компании «Изиньню» решили провести самый масштабный проект по клонированию коров: в общей сложности они решили получить 479 клонированных коров. По некоторым данным, уже во время первого эксперимента было получено от 20 до 50 клонированных телят, которые появились на свет в деревне Люшику, уезда Урумчи Синьизян -Уйгурского автономного района. Из заявления зампредседателя уездного комитета Народного политического консультативного совета Фэн Лишэ известно, что настоящий проект клонирования крупного рогатого скота реализуется совместно с Китаем, Австралией, Канадой, США и Великобританией и другими странами. В результате реализации первой стадии проекта из 479 коров с клонированными эмбрионами забеременело 10% . этот показатель соответствует передовому уровню. На осуществление данного проекта компания «Изиньню» выделила около 1 млн. долларов. На эти деньги было куплено новейшее оборудование, а также создан институт биотехнологических исследований. Целью проекта было «дальнейшее развитие биофармацевтики и улучшение племенной работы».

Информация к размышлению.

Некоторыми независимыми компаниями были проведены исследования, доказывающие, что мясо и молоко клонированных коров полностью безопасно и ничем не отличается от мяса и молока обычных животных.
«Мясо и молоко от крупного и мелкого рогатого скота и свиней так же безопасны, как те продукты, которые мы едим каждый день», - сказал Стивен Сандлоф, директор ветеринарной службы FDA. Сандлоф призвал различные компании быть осторожнее с заявлениями о том, что их продукты не содержат ничего клонированного, так как «Такие заявления подразумевают, что «неклонированная» продукция более безопасна. FDA намерено борется с такими утверждениями, если они ничем не подтверждены и вводят потребителей в заблуждение». Действительно, в прессе было много информации о вреде генетически модифицированных продуктов, но информация о вреде мяса и молока клонированных животных мне не попадалась.

Генетически модифицированные продукты, например, новые сорта картофеля, получают путем генетического скрещивания какого-либо сорта картофеля с другим растением, в результате чего получается картофель с измененным генным кодом. Ученые утверждают, что клонированные коровы являются генетически идентичными донорской линии, т.е. генетический код коров-доноров и клонированных коров должен совпадать как у однояйцовых близнецов, каждый из которых представляет собой самостоятельный организм, но при этом имеют совершенно одинаковую наследственность. Теперь мы знаем, что ученые работают не просто по увеличению приплода у крупных млекопитающих, но также и по улучшению качества и увеличению количества молока и мяса. Но какими путями это достигается? И не закладываются ли какие-либо генные изменения, которые могут привести к необычным болезням у этих животных (по примеру с Долли) или в дальнейшем вызвать какие-либо болезни, и чего еще хуже, генные изменения у людей, употребляющих в пищу молоко и мясо этих животных? Когда человек задается вопросом, ответ на него всегда приходит. Думаю, что в ближайшее время мы узнаем ответа на поставленные вопросы.

Клонирование кошки.

Первую клонированную кошку удалось получить ученым из Техаса, но котенок получился совершенно непохожим на свою генетическую мать. С генетической точки зрения, котенок, которого назвали Сиси, и мать, совершенно идентичны, но ученых смутил тот факт, что у котенка совсем другой окрас по сравнению с матерью. В ходе эксперимента было создано 87 клонированных эмбрионов кошки, однако выжил всего лишь один зародыш, но ученые были удовлетворены результатом эксперимента, так как до этого им удавалось клонировать лишь мышей, овец, коров, коз и свиней. Ученые опасались, что кошка вырастет не совсем здоровой, поскольку у клонированных животных часто бывает нарушена репродуктивная функция. Но Сиси успешно родила 3 котят. Как сообщается на официальном сайте университета A8rM (Техас), Сиси и ее потомство чувствуют себя хорошо. Кошка Сиси – первая в мире кошка-клон, она родилась в декабре 2001 года.

Клонирование собаки.

В августе 2005 года южнокорейскими учеными был получен первый клон собаки – это щенок афганской борзой.
Этими же учеными был создан клонированный эмбрион человека, а также велись работы по созданию стволовых клеток для 11 пациентов, имеющих различные болезни и повреждения.

Клонирование свиней.

5 марта 2000 года британская компания PPL Therapeutics объявила о том, что в их исследовательском центре родилось 5 поросят. Этот эксперимент примечателен тем, что это первое клонирование, полученное от взрослой особи свиньи, завершившееся успешным результатом. Основной же целью эксперимента было получение измененных органов свиньи, которые будут использованы для трансплантации вместо человеческих органов. Органы свиньи наиболее подходят человеку по размерам. Единственной проблемой является отторжение органа животного человеческим организмом. Именно в этом направлении будут развиваться дальнейшие исследования ученых. В качестве одного из оптимальных путей решения данной задачи, по мнению ученых, является «генетическая маскировка» органов животного, чтобы человеческий организм не смог идентифицировать их как чужие.

Информация к размышлению.

Заманчивые перспективы, которые якобы открыло для человечества клонирование, в настоящее время все больше и больше развенчиваются. В погоне за прибылью генетики оставили развитие селекции и целиком переключились на идею клонирования. Есть предположение, что идея воссоздания идентичной копии человека возникла с целью привлечь большое количество дотаций на исследования. Бесспорно, перспектива клонирования интересна, однако в реальной жизни она должна быть направлена не на создание приспособленных для жизни клонов животных и людей, а на сохранение редких видов животных, растений или на возрождение утраченных. Но ученые выбрали иное направление.

С развитием науки, сложный и трудоемкий процесс клонирования стал возможным. Но уже сейчас существует небезосновательное предположение, что у клонированных животных развиваются различные болезни и живут эти животные в 1,5-2 раза меньше, чем животные, родившиеся в результате естественного оплодотворения.
Предположение ученых, что клонированные животные будут жизнеспособнее и продуктивнее, чем их родители, на практике не оправдалось. Это предположение исходило из того, что при исследованиях было выявлено: у клонированных животных самостоятельное деление клетки идет больше, чем у оригинала. Например, у клонированного быка получалось 90 делений клетки, а у оригинала существует только 60. Был сделан вывод – клонированное животное должно быть более жизнеспособно, чем оригинал. Но почему сделан такой вывод, непонятно. Ведь известно, например, что клетки человека делятся только 50 раз и живет он в среднем 70-80 лет, а клетки быка делятся 60 раз и живет он 15-20 лет. Уже из этого можно было предположить, что продолжительность жизни клонированного животного будет меньше его оригинала.

Деление клеток нельзя отследить внутри организма живого существа, поэтому деление клеток отслеживалось в пробирках, в специальных питательных растворах. Но не исключено предположение, что вне организма клетки в пробирке могут давать больше делений. В целостном же организме клетки организованы, между ними постоянно происходит обмен веществами и информацией. Ученым также было известно, что клонирование не может полностью исключить накопившиеся отрицательные мутации – факторы воздействия окружающей среды. Сильное влияние таких факторов было доказано еще ранее при генетическом обследовании близнецов. Различия между ними были тем больше, чем более были различны условия, в которых они росли. Также известно, что роль среды очень велика в проявлении многих наследственных заболеваний. Чтобы получить здоровый, жизнеспособный клон, необходимо удалить из клетки, используемой для клонирования, все мутационные гены, но в настоящее время это не представляется возможным. Есть также предположение, что если ученые научатся удалять мутационные гены у живых существ, то необходимость в клонировании отпадет.

Также необходимо сказать еще о следующем моменте в пользу полового размножения. При бесполом размножении, к которому относится и клонирование, вредные мутации всегда сохраняются и от оригинала передаются всем, без исключения, потомкам. При половом размножении такие мутации в большинстве случаев приобретают рецессивные признаки, т.е. те, которые не обязательно должны проявиться и с каждым поколением они все больше подавляются. Большинство же клонированных существо обречено на гибель по причине деградации. Только очень малый процент существ, получивших исключительно положительные мутации, способен выжить в перспективе. Именно от таких жизнеспособных особей происходит очередные массовые увеличения численности вида в животном мире. Следует отметить, что эта возможность предполагается исключительно для мелких и простейших животных и растений.

Плодовитость высокоразвитых животных и человека сравнительно невелика, поэтому такой способ размножения, как клонирование, непременно приведет к деградации, так как процесс вымирания происходит быстрее размножения.
Также известно, что конечные клоны практически не соответствуют оригиналу, т.е. исходному генотипу. Ученые уже сделали вывод, что сохранение точной копии оригинала невозможно ни при каких условиях и с течением времени в каждом последующем поколении клонов эта точность идентичности будет ухудшаться. Также не вызывает сомнений, что через 8-10 поколений все положительные показатели клона, взятые от оригинала, изживут себя.
При естественном размножении, чем больше скрещиваются между собой особи с разными признаками, тем сильнее и выносливее потомство. Такой способ размножения позволяет уменьшить недостатки мутационных изменений, неизбежно происходящих в природе.

Генная инженерия.

В древнейших городах Двуречья археологи нашли глиняные таблички с шумерской клинописью. В вавилонских текстах описывается рыба-человек Энки – сын Анну (Неба). Энки занимался созданием разумных существ, производил скрещивание первобытного человека с различными животными, пока не создал человека разумного. Он передал людям письменность, науки, всякого рода искусства, научил их строить города и храмы, устанавливать законы, научил людей сажать и собирать различные плоды. Все тело у Энке было рыбье и покрыто чешуей, под рыбьей головой была голова человеческая и речь его также была человеческая. Он проводил весь день среди людей, не принимая никакой пищи, а когда солнце заходило, «это удивительное существо погружалось в море и проводило ночи в пучине, ибо там был его дом. Он написал также книгу о начале мира и о том, как он возник, и вручил ее людям. В древнейшем городе Шумера существовал его храм Энки-Абзу, т.е. храм «морской бездны». Изображения Энки, рыбы-человека, сохранились и поныне.

Зоофилия.

Загадку появления зверолюдей ученые также объясняют зоофилией, существовавшей в древние времена. Первобытный человек удовлетворял свои сексуальные потребности с помощью животных. Особенно распространено это было в армиях во время военных походов. При каждой армии было стадо овец или коз. Эти животные служили воинам не только провиантом, но и объектами любви. Такая ситуация сохранялась довольно долго. Если верить письменным источникам, в 1562 году при осаде Лиона в итальянской армии наблюдалось массовое дезертирство из-за дефицита овец и коз для соответствующих нужд. А такие ученые древности, как Парацельс и Кардано, а также известный акушер XVI века Лицети неоднократно описывали случаи рождения человекозверей как у женщин, так и у самок различных животных. Подтверждение существования человекоживотных и человекоптиц давно уже находят археологи, просто об этих находках было запрещено говорить, и эта информация была известна только в узких научных кругах.

Люди-животные.

Недавно китайские генетики объявили о том, что им удалось скрестить человека с кроликом. Для этого яйцеклетки крольчихи были освобождены от родной ДНК, после чего в них внесли ДНК человека. Было получено более 400 эмбрионов, которые затем разрушили, получив стволовые клетки для дальнейших экспериментов. Для каких экспериментов? Об этом нам не сообщают. Воодушевленные же успехом, ученые планируют уже в ближайшем будущем создать новый гибрид – человека-мышь. Об этом нам сообщает журнал Cell Research, который издается Шанхайским институтом клеточной биологии и Академией наук КНР. Следует добавить, что подобные опыты проводились учеными из Массачусетса (США) с клетками коровы, но успехом они не увенчались.
Были сообщения и том, что ученые Австралии создали человеко-свиной эмбрион, который планировалось имплантировать в матку свиньи для дальнейшего выращивания. Для получения этого гибрида из клетки человеческого эмбриона изъяли ядро и внедрили в яйцеклетку свиньи. Получился эмбрион в 97% человеческой ДНК и 3% свиной.

Люди-растения.

Читая сказки братьев Гримм, мы узнаем, что в заколдованном лесу вдруг как по волшебству оживают деревья. Не эту ли идею из подобных сказок взяли современные ученые-генетики, и решили создать гибрид человека с растением? Но, тем не менее, откуда бы, не пришла эта идея, из прессы мы узнаем, что идея создания гибрида человека с растением уже захватила научные умы. Так, британские ученые начали выращивать деревья-надгробные памятники. В ядрах клеток этих деревьев содержатся ДНК покойных. Этими разработками занимается компания Bioabsence, которая за год высадила уже 500 генномодифицированных яблонь на могилах усопших. Специалисты этой компании заверяют заказчиков, что каждое дерево и его плоды будут «сходны по внешнему облику» с покойным.
В дальнейшем компания Bioabsence планирует предложить к продаже растения, способные двигаться и элементарно мыслить. Первые экспериментальные тропические лианы уже выращиваются в оранжереях, но увидеть мы их пока не можем, так как доступ в эти оранжереи закрыт для посторонних лиц. Как говорят ученые, лианы очень быстро растут, умеют поворачиваться в сторону человека, приближающегося к ним, и имеют устрашающего вида колючки, способные парализовать или даже убить человека. Большой интерес к этим разработкам уже сейчас проявляют различные службы безопасности.

Человек-кактус по случаю.

Оказывается, что гибриды человека с растением могут появляться не только в специальных экспериментальных лабораториях. Так в одной из своих книг известный писатель и журналист Николай Непомнящий рассказывает о молодой москвичке, решившей съездить с родителями на отдых в Мексику. В окрестностях курортного города Акапулько девушка увидела кактус, сплошь покрытый дымчатыми, пушистыми волосками. Движимая любопытством, она дотронулась до кактуса и почувствовала боль в руке, оказалось, что она укололась острыми колючками. Промокнув салфеткой капельки крови, девушка забыла о случившемся. Однако через какое-то время рука, а за ней и все тело у девушки начало зарастать. Ни удаление их пинцетом, ни сбривание результата не дало: колючки вырастали вновь. Как оказалось, споры кактуса проникли в кожу, прижились и дали поросль. Девушка была в отчаянии, но, вернувшись в Москву, она нашла клинику, где ей с помощью лазера удалили существенную часть колючек и спор. Прошло время, девушка вышла замуж, родила ребенка. Но о том времени, когда она была гибридом человека и кактуса, вспоминает с содроганием.

Вокруг всевозможных гибридов человека с животными и растениями бушуют нешуточные споры. Общественность давно уже бьет тревогу, католическая церковь также хочет остановить ученых. В свою очередь ученые уверяют всех о пользе подобных опытов для человечества. Чем реально могут обернуться для нас эти эксперименты? Хочется надеяться, что не злом.

История клонирования.

I. КЛОНИРОВАНИЕ - ПРОБЛЕМА ЭТИЧЕСКАЯ

Механизм клонирования как процедура генной инженерии в целом не очень сложен. Обычная клетка живого организма, не вдаваясь в детали, это так называемая цитоплазма, в которой плавает ядро. Ядро содержит программу развития организма - набор генов, полученных от родителей. Половые клетки, в отличие от остальных клеток организма, укомплектованы только наполовину. Так, женская яйцеклетка, способная давать зародыш, до оплодотворения содержит неполный, набор генов, в ее ядре отсутствует мужской набор генов, или, точнее сказать, хромосом. Это обстоятельство и подсказало генетикам довольно простую схему опыта

Из половой яйцеклетки животного удаляется ядро и вместо него вводят ядро из любой обычной (неполовой) клетки организмадонора Такое ядро содержит полную генетическую информацию о своем организме, и теперь, если искусственно созданную клетку (цитоплазма от одного организма, а ядро от другого) подсадить в детородный орган приемной матери, то родившийся от нее организм будет генетической копией (клоном) того, из которого взято ядро. Таким продуктом рук человека стала овца Долли, о которой уже много написано и сказано. Ее творцы -- группа биологов, руководимая Яном Уилмутом из Рослинского института в Эдинбурге (Шотландия).

Безусловно, это большое научное достижение. Ценность разработанной методики в том, что она открыла возможность первоначально оценить своеобразие и полезность уже сформировавшегося организма, а затем принимать решение о целесообразности создания идентичной копии. Ранее эта методика была применима только для создания копий эмбрионов, то есть развивающихся организмов, ценность; которых была не ясна. Однако первая публикация в журнале "Nature" не дает окончательного ответа на вопрос: можно ли получать копии на базе клеток (ядер) взрослого организма. Вопервых, описан единственный позитивный результат, который пока не подтвержден ни самими авторами, ни кем-либо другим. Вовторых, статья не дает ответа и на ряд других вопросов. И главное: авторы работы не могут с уверенностью сказать, из ядра какой клетки получена Долли. Для клонирования брали клетки эпителия молочной железы, то есть вымени взрослой беременной овцы. Это может быть очень специфическая и редкая в организме клетка, которая возникает в молочной железе при беременности. Следует также иметь в виду, что получение Долли из ядра соматической клетки (если это действительно имело место) существенно изменяет наши представления о механизмах развития организмов и сопровождающих этот процесс изменениях генетического материала. По крайней мере до последнего времени считалось, что разного рода мутации, накапливающиеся в геноме, должны препятствовать процессу клонирования.

Реконструкция, технически не сложная операция, чаще всего выполняются обычным механическим инструментом, только очень мелким. Однако требуется большой опыт и умение. Ведь величина клетки довольно мала -- в пределах 1020 мкм, а ядро еще меньше. Шотландские экспериментаторы использовали, в частности, электрический разряд для слияния ядра и яйцеклетки. Есть определенные тонкости и на других этапах эксперимента. Но они технически преодолимы.

Насколько надежен предложенный подход, пока однозначно сказать нельзя. Уильмутом проведено около 300 пересадок ядер из клеток эпителия, но получена лишь одна нормальная взрослая овца, сходная генетически с донором ядра. Нельзя исключить, что, идя таким путем, при следующих сотнях пересадок не удастся получить ни одной копии. Настораживает слишком большая шумиха вокруг этой работы. Не исключено, что в ней есть элемент саморекламы.

Опыт с Долли показал, что во взрослом организме могут сохраняться отдельные клетки, способные развиваться в целый живой организм. И главным будет поиск этих специфических клеток. Оценивая дальнейшие перспективы клонирования, следует иметь в виду еще одну проблему: генокопии можно отлучать только неполовым путем. Нельзя исключить также то, что полученная генетическая копия вообще не сможет давать потомство. Тем не менее, можно себе представить, что в будущем при хорошо налаженной недорогой технологии клонирования можно будет получать стада элитных овец и буренок. Вероятно, таким путем можно будет исправить положение с исчезающими видами животных, внесенных в Красную книгу, например, пересадить ядро клетки замороженного мамонта в яйцеклетку слонихи из зоопарка. В России уже давно имеются специалисты, потенциально способные решать - проблемы эмбриогенетики. К сожалению, в последние годы многие из них работают за границей и, к стати сказать, очень ценятся там. И тем не менее, у нас имеются определенные успехи в этом направлении, которые, в первую очередь, связаны с переносом генов в ядрах зигот и эмбриональных клеток и последующим получением из них целых организмов. Такие эксперименты проводятся как в РАСХН, так и в РАН. Например, в нашем Институте недавно удалось впервые в России получить мышь у которой целенаправленно разрушен один из генов (это называется нокаутировать ген). Такой эксперимент принципиально не менее сложен, чем клонирование мыши с использованием эмбриональных клеток. На первом этапе мы получили химеру, то есть организм, часть клеток которого происходит от одной пары родителей, а часть от другой пары.

Получение химер -- овцекозы -- есть реальный факт. В этом случае используется такой прием -- перенос целых эмбриональных клеток одного вида организма в ранние эмбрионы другого вида. Недавно было сообщено о частичном эмбриональном развитии гибрида, состоящего из ядра свиньи, перенесенного в яйцо коровы. Так что сейчас трудно до конца представить фантастические возможности, которые несут в себе современная молекулярная генетика и эмбриогенетика.

Главная интрига в проблеме - клонирование человека? Но здесь надо иметь в виду не столько технические проблемы, сколько этические, психологические. Первое: в процессе клонирования может быть брак, что допустимо в случае животных и недопустимо в случае клонирования человека. Далее следует иметь в виду, что человек как индивидуум под влиянием генов формируется только процентов на 50. Остальное в значительной мере определяется условиями жизни. Воспроизвести полностью материальные и социальные условия развития, в каких формировался генетический оригинал, невозможно. Вместо гения может получиться удачливый рецидивист, вместо талантливого ученого -- неспособный коммерсант. И хотя очевидны все негативные моменты, запретить работы по клонированию человека невозможно. Большие деньги могут решать все. Нужен детальный анализ ситуации и четкое правовое регулирование.

Поэтому, не дожидаясь реальных успехов ученых в этом направлении, следует подумать о разработке юридических документов, регламентирующих подобную деятельность. Президент Клинтон, как известно, сразу же после появления статьи на эту тему ввел запрет на подобные эксперименты. Обсуждается она и в нашей Думе, в Европейской комиссии по этике.

В Англии уже 6 лет существует Акт, по которому запрещено осуществлять работы с ядрами и клетками человеческих эмбрионов. Однако работа шотландских ученых не подпадает под этот Акт, поскольку они использовали ядра клеток взрослой овцы. Дело в том, что когда готовился запрещающий Акт, никто не мог предположить, что подобное возможно. Теперь в Англии переполох, к которому подключились даже религиозные организации. Были предостережения от публикации статьи о Долли в журнале. Рассуждая теоретически о пользе создания генокопий, имеют в виду такие гуманные перспективы, как использование приема клонирования для создания генетических органовдублей с целью трансплантации без риска их отторжения.

Важнейшие открытия в биологии в XX веке

Подобно тому, как в конце XIX века открытия физики рентгеновских лучей и радиоактивности стимулировали развитие естествознания следующего века, так и достижения молекулярной биологии конца XX века определит, по-видимому...

Клонирование животных

В своем эксперименте Кэмпбелл и его коллеги извлекли из эмбриона овцы на ранней стадии развития (на стадии эмбрионального диска) клетку и вырастили культуру клеток, то есть добились того...

Основные проблемы генетики и роль воспроизводства в развитии живогов развитии живого

Термин "клон" происходит от греческого слова "klon", что означает - веточка, побег, черенок, и имеет отношение прежде всего к вегетативному размножению. Клонирование растений черенками, почками или клубнями в сельском хозяйстве...

Основы биотехнологии и ее научно-производственная база

Особенности клонирования

Клон - это идентичный близнец другого человека, отсроченный во времени. В сущности, речь идет даже не о клонировании, а о получении копии отдельного индивида, поскольку термин «клонирование» предполагает получение некоего множества особей...

Отрасли применения генной инженерии

Уже несколько десятилетий подряд ученые всего мира пытаются исследовать геном человека, где заложена вся его наследственная информация. Первым этапом этих глобальных исследований стало создание проекта «Геном Человека» в 1990 году...

Клонирование растений, в отличие от клонирования животных, является обычным процессом, с которым сталкивается любой цветовод или садовод. Ведь часто растение размножают отростками, черенками, усиками и т.д. Это и есть пример клонирования...

Процесс и проблемы клонирования

Эксперименты по клонированию человека продолжаются уже много лет. В 1993 году ученый из Южной Кореи (университет Кьюнджи) создал клон человека, вырастил его до 4 клеток и уничтожил. Понять, удался ли эксперимент, можно только...

Размножение - одно из фундаментальных свойств живого. Способы и формы размножения организмов

Получение идентичных потомков при помощи бесполого размножения называют клонированием. В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования...

Современная биотехнология

Клонирование - совокупность методов, использующихся для получения клонов. Клонирование многоклеточных организмов включает пересадку ядер соматических клеток в оплодотворенное яйцо с удаленным пронуклеусом. Дж...

Современные проблемы клонирования. Их этическая сущность

Пожалуй, одним из наиболее ярких достижений генетики за последнее время является эксперимент по клонированию овцы, успешно завершенный 23 февраля 1997 года учеными Рослинского университета в Шотландии под руководством Яна Вилмута. Для того...

Трансформация бактерий как основа генной инженерии и молекулярного клонирования

Молекулярное клонирование (molecular cloning or gene cloning) - клонирование молекул ДНК (в том числе генов, фрагментов генов, совокупностей генов, ДНК-последовательностей, не содержащих гены)...

С момента изобретения термина «клон» в 1963 году генная инженерия пережила несколько колоссальных скачков: мы научились извлекать гены, разработали метод полимеразной цепной реакции, расшифровали геном человека и клонировали ряд млекопитающих. И все же, на человеке эволюция клонирования остановилась. С какими этическими, религиозными и технологическими проблемами она столкнулась? Т&P изучили историю создания генетических копий, чтобы понять, почему мы до сих пор не клонировали себя.

Слово «клонирование» (англ. «cloning») происходит от древнегреческого слова «κλών» - «веточка, отпрыск». Этот термин описывает целый ряд разнообразных процессов, которые позволяют создать генетическую копию биологического организма или его части. Внешний вид такой копии может отличаться от оригинала, однако с точки зрения ДНК она всегда полностью ему идентична: группа крови, свойства тканей, сумма качеств и предрасположенностей остаются теми же, что и в первом случае.

История клонирования началась больше ста лет назад, в 1901 году, когда немецкому эмбриологу Хансу Шпеману удалось разделить двухклеточный зародыш саламандры пополам, и вырастить из каждой половины полноценный организм. Так ученым стало известно, что на ранних стадиях развития необходимый объем информации содержит каждая клетка эмбриона. Год спустя другой специалист, генетик из США Уолтер Саттон предположил, что эти сведения находятся в клеточном ядре. Ханс Шпеман принял эту информацию к сведению и через 12 лет, в 1914 году, успешно провел опыт по пересадке ядра из одной клетки в другую, а спустя еще 24 года, в 1938 году, предположил, что ядро можно пересадить в безъядерную яйцеклетку.

Затем развитие клонирования практически остановилось, и только в 1958 году британскому биологу Джону Гердону удалось успешно клонировать шпорцевую лягушку. Для этого он использовал неповрежденные ядра соматических (не принимающих участие в размножении) клеток организма головастика. В 1963 году другой биолог, Джон Холдейн впервые использовал термин «клон», описывая работы Гердона. Тогда же китайский эмбриолог Тун Дичжоу провел эксперимент по переносу ДНК взрослого карпа-самца в икринку женской особи и получил жизнеспособную рыбу, - а заодно и звание «отца китайского клонирования». После этого было проведено несколько успешных экспериментов по клонированию живых организмов: моркови, выращенной из изолированной клетки (1964 год), мышей (1979 год), овцы, чей организмы был создан из эмбриональных клеток (1984 год), двух коров, «рожденных» из дифференцированных клеток однонедельного эмбриона и клеток зародыша (1986 год), еще двух овец по кличке Меган и Мораг (1995 год) и, наконец, Долли (1996 год). И все же, для ученых Долли стала скорее вопросом, чем ответом на вопрос.

Медицинские проблемы: аномалии и «старые» теломеры

Именно Долли на сегодняшний день принадлежит звание самого знаменитого клона в истории дисциплины. Ведь она была создана на основе генетического материала взрослой особи, а не зародыша или эмбриона, как ее предшественницы и предшественники. Однако источник ДНК, согласно предположением ряда ученых, стал для клонированной овцы проблемой. Концы хромосом в организме Долли - теломеры - оказались такими же короткими, как и у ее ядерного донора - взрослой овцы. За длину этих фрагментов в организме отвечает специфический фермент - теломераза. В случае со взрослым организмом млекопитающего она, чаще всего, активна только в половых и стволовых клетках, а также в клетках лимфоцитов в момент иммунного ответа. В тканях, состоящих из такого материала, хромосомы постоянно удлиняются, а вот во всех остальных - укорачиваются после каждого деления. Когда хромосомы достигают критической длины, клетка перестает делиться. Вот почему теломераза считается одним из главных внутриклеточных механизмов, который регулирует продолжительность жизни клеток.

Сегодня нельзя сказать точно, стали ли «старые» хромосомы Долли причиной ее ранней для овец кончины. Она прожила 6,5 лет, что составляет чуть больше половины обычной для этого вида продолжительности жизни.

Специалистам пришлось усыпить Долли, поскольку у нее развился вызванный вирусом аденоматоз (доброкачественные опухоли) легких и тяжелый артрит. Обыкноывенные овцы тоже нередко страдают этими заболеваниями, но чаще в конце жизни, так что исключать влияние длины теломер Долли на деградацию тканей, очевидно, нельзя. Ученым, которые хотели проверить гипотезу о «старых» теломерах клонированных живых существ, не удалось ее подтвердить: искусственное «состаривание» ядер клеток молодого теленка путем их длительного культивирования в пробирке после рождения его клонов дало совершенно противоположный результат: длина теломер в хромосомах новорожденных телят сильно увеличилась и даже перегнала нормальные показатели.

Теломеры клонированных животных могут оказаться короче, чем у их обыкновенных собратьев, однако это не единственная проблема. Большая часть эмбрионов млекопитающих, полученных путем клонирования, погибает. Момент рождения тоже является критическим. Новорожденные клоны часто страдают гигантизмом, умирают от респираторного дистресса, дефектов развития почек, печени, сердца, мозга, а также отсутствия в крови лейкоцитов. Если животное все-таки выживает, нередко к старости у него развиваются другие аномалии: например, клонированные мыши в преклонном возрасте часто страдают ожирением. Тем не менее, потомство клонированных теплокровных существ не наследует пороков их физиологии. Это позволяет говорить о том, что изменения ДНК и хроматина, которые могут возникать при пересадке донорского ядра, являются обратимыми и стираются, когда геном проходит через зародышевый путь: ряд поколений клеток от первичных половых клеток зародыша до половых продуктов взрослого организма.

Общественный аспект: как социализировать клона

Клонирование не позволяет полностью повторить сознание человека, ведь далеко не все в процессе его формирование обусловлено генетикой. Вот почему о полной идентичности донорской и клонированной личности речи идти не может, а потому практическая ценность клонирования в действительности намного ниже, чем то, как традиционно видят ее в своем сознании писатели- и режиссеры-фантасты. И все же, сегодня в любом случае остается неясным, как создать для клонированного человека место в обществе. Какое имя он должен носить? Как в его случае оформить отцовство, материнство, брак? Как решать правовые вопросы имущества и наследования? Очевидно, воссоздание человека на основе донорского генетического материала потребовало бы появления особой общественной и правовой ниши. Ее возникновение изменило бы ландшафт привычной системы семейных и социальных отношений намного сильнее, чем, к примеру, регистрация однополых браков.

Религиозный аспект: человек в роли Бога

Представители крупнейших религий и конфессий выступают против клонирования человека. Папа Римский Иоанн Павел II, который был предстоятелем Римско-католической церкви с 1978 по 2005 год, сформулировал ее позицию так: «Путь, указанный Христом, - это путь уважения человека, и любые исследования должны иметь целью познание его в его истинности, чтобы потом служить ему, а не манипулировать им в соответствии с проектом, который иногда высокомерно считается лучшим, чем проект самого Создателя. Для христианина тайна бытия настолько глубока, что она неисчерпаема для человеческого познания. Человек же, который с самонадеянностью Прометея возносит себя до арбитра между добром и злом, превращает прогресс в собственный абсолютный идеал и впоследствии бывает раздавлен им. Прошедший век с его идеологиями, которыми печально отмечена его трагическая история, и войнами, избороздившими его, стоит перед глазами всех как демонстрация результата такой самонадеянности».

Патриарх Русской православной церкви Алексий II, занимавший этот пост с 1990 по 2008 год, выступил против экспериментов по генетическому воссозданию человека еще жестче. «Клонирование человека - аморальный, безумный акт, ведущий к разрушению человеческой личности, бросающий вызов своему Создателю», - заявил патриарх. Далай-лама XIV также высказывался в отношении экспериментов по генетическому воссозданию человека с опаской. «Что касается клонирования, то, как научный эксперимент, оно имеет смысл, если принесет пользу конкретному человеку, но если применять его сплошь и рядом, в этом нет ничего хорошего», - заявил буддийский первосвященник.

Опасения верующих и служителей церкви вызывает не только тот факт, что в подобных экспериментах человек заступает за рамки традиционных способов воспроизведения своего вида и, по сути, берет на себя роль Бога, но и то, что даже в рамках одной попытки клонирования тканей с использованием эмбриональных клеток должно быть создано несколько зародышей, большая часть из которых погибнет или будет умерщвлена. В отличие от процесса клонирования, который предсказуемо не упоминается в Библии, о зарождении жизни человека в канонических христианских текстах информация есть. Псалом Давида 138:13-16 говорит: «Ибо Ты устроил внутренности мои и соткал меня во чреве матери моей. Славлю Тебя, потому что я дивно устроен. Дивны дела Твои, и душа моя вполне сознает это. Не сокрыты были от Тебя кости мои, когда я созидаем был в тайне, образуем был во глубине утробы. Зародыш мой видели очи Твои; в Твоей книге записаны все дни, для меня назначенные, когда ни одного из них еще не было». Это утверждение богословы традиционно трактуют как указание на то, что душа человека возникает не в момент его появления на свет, а раньше: между зачатием и рождением. Из-за этого уничтожение или гибель эмбриона может рассматриваться как убийство, а это противоречит одной из библейских заповедей: «Не убий».

Польза клона: воссоздавать органы, а не людей

Клонирование биологического материала человека в ближайшие десятилетия, тем не менее, может все-таки оказаться полезным и лишиться, наконец, своей «криминальной» мистической и этической составляющей. Современные технологии сохранения пуповинной крови позволяют брать из нее стволовые клетки для создания органов для пересадки. Такие органы идеально подходят человеку, поскольку несут в себе его собственный генетический материал и не отторгаются организмом. При этом для такой процедуры нет необходимости воссоздавать зародыш. Эксперименты для развития подобной технологии уже проводились: в 2006 году британским ученым удалось вырастить небольшую печень из клеток пуповинной крови зачатого и рожденного обычным способом младенца. Это произошло спустя несколько месяцев после его появления на свет. Орган получился небольшим: всего 2 см в диаметре, - однако его ткани были в порядке.

Тем не менее, сегодня более известны формы терапевтического клонирования, которые предполагают создание бластоцисты: эмбриона ранней стадии развития, состоящего из порядка 100 клеток. В перспективе бластоцисты, разумеется, являются людьми, так что их использование нередко вызывает такие же споры, как и клонирование с целью получения живого человека. Отчасти именно поэтому сегодня все формы клонирования, включая терапевтическое, во многих странах официально запрещены. Воссоздание человеческого биоматериала в терапевтических целях разрешается только в США, Индии, Великобритании и некоторых частях Австралии. Технологии сохранения пуповинной крови сегодня используются нередко, однако пока ученые рассматривают ее лишь как потенциальное средство борьбы с диабетом I типа и сердечнососудистыми заболеваниями, а не как возможный ресурс для создания органов для трансплантации.