Схема переваривания и всасывания углеводов в организме. Биохимия питания и пищеварения

Обмен и функции углеводов.

В организме человека имеется несколько десятков разных моносахаридов и очень много разных олиго – и полисахаридов. Функции углеводов в организме заключаются в следующем:

1) Углеводы служат источником энергии: за счет их окисления удовлетворяется примерно половина всей потребности человека в энергии. В энергетическом обмене главная роль принадлежит глюкозе и гликогену.

2) Углеводы входят в состав структурно – функциональных компонентов клеток. К ним относятся пентозы нуклеотидов и нуклеиновых кислот, углеводы гликолипидов и гликопротеинов, гетерополисахариды межклеточного вещества.

3) Из углеводов в организме могут синтезироваться соединения других классов, в частности липиды и некоторые аминокислоты.

Таким образом, углеводы выполняют многообразные функции, и каждая из них жизненно важна для организма. Но если говорить о количественной стороне, то первое место принадлежит использованию углеводов в качестве источника энергии.

Наиболее распространенный углевод животных – глюкоза. Она играет роль связующего звена между энергетическими и пластическими функциями углеводов, поскольку из глюкозы могут образоваться все другие моносахариды, и наоборот – разные моносахариды могут превращаться в глюкозу.

Источником углеводов организма служат углеводы пищи – главным образом крахмал, а также сахароза и лактоза. Кроме того, глюкоза может образовываться в организме из аминокислот, а также из глицерина, входящего в состав жиров.

Переваривание углеводов

Углеводы пищи в пищеварительном тракте распадаются на мономеры при действии гликозидаз – ферментов, катализирующих гидролиз гликозидных связей.

Переваривание крахмала начинается уже в ротовой полости: в слюне содержится фермент амилаза (α-1,4-гликозидаза), расщепляющий α-1,4-гликозидные связи. Поскольку пища в ротовой полости находится недолго, то крахмал здесь переваривается лишь частично. Основным местом переваривания крахмала служит тонкий кишечник, куда поступает амилаза в составе сока поджелудочной железы. Амилаза не гидролизует гликозидную связь в дисахаридах.

Мальтоза, лактоза и сахароза гидролизуются специфическими гликозидазами - мальтазой, лактазой и сахаразой соответственно. Эти ферменты синтезируются в клетках кишечника. Продукты переваривания углеводов (глюкоза, галактоза, фруктоза) поступают в кровь.

Рис.1 Переваривание углеводов

Сохранение постоянства концентрации глюкозы в крови является результатом одновременного протекания двух процессов: поступления глюкозы в кровь из печени и потребления ее из крови тканями, где она и используется на энергетический материал.

Рассмотрим синтез гликогена .

Гликоген – сложный углевод животного происхождения, полимер, мономером которого являются остатки α-глюкозы, которые связаны между собой через 1-4, 1-6 гликозидными связями, но имеют более ветвистое строение, чем крахмал (до 3000 остатков глюкозы). Молекулярный вес гликогена очень велик – ОН лежит в пределах от 1 до 15 миллионов. Очищенный гликоген – белый порошок. Он хорошо растворяется в воде, может быть осажден из раствора спиртом. С «I» дает бурую окраску. В печени находится в виде гранул в комплексе с белками клеток. Количество гликогена в печени может достигнуть 50-70 г – это общий резерв гликогена; составляет от 2 до 8 % массы печени. Гликоген также содержится в мышцах, где он образует локальный резерв , в незначительном количестве он содержится в других органах и тканях, включая жировую ткань. Гликоген в печени представляет собой мобильный резерв углеводов, голодание в течение 24 часов полностью его истощает. По данным Уайта и соавторов, скелетная мышца содержит примерно 2/3 всего гликогена тела (в связи с большой массой мышц большая часть гликогена находится в них) – до 120 г (для мужчины весом 70 кг), но в скелетных мышцах его содержание от 0,5 до 1 % от массы. В отличие от гликогена печени мышечный гликоген не истощается так легко при голодании даже в течение длительного времени. Механизм синтеза гликогена в печени из глюкозы в настоящее время выяснен. В печеночных клетках глюкоза подвергается фосфорилированию при участии фермента гексокиназы с образованием глюкозы-6-Ф.

Рис.2 Схема синтеза гликогена

1. Глюкоза + АТФ гексоки наза Глюкоза-6-Ф + АДФ

2. Глюкоза-6-Ф фосфоглюкомутаза Глюкоза-1-Ф

(вовлекается в синтез)

3. Глюкоза-1-Ф + УТФ глюкозо-1-Ф уридил трансфераза УДФ-1-глюкоза + Н 4 Р 2 О 7

4. УДФ-1-глюкоза + гликоген гликогенсинтаза Гликоген + УДФ

(затравка)

Образовавшийся УДФ может вновь фосфорилироваться за счет АТФ и весь цикл превращений глюкозы-1-Ф повторяется снова.

Активность фермента гликогенсинтазы регулируется путем ковалентной модификации. Этот фермент может находиться в двух формах: гликогенсинтазы I (independent – независимая от глюкозы-6-Ф) и гликогенсинтазы D (dependent – зависимая от глюкозы-6-Ф).

Протеинкиназа фосфорилирует при участии АТФ (не фосфорилирует форму I-фермента, переводя ее в фосфорилированную форму D-фермента, у которого фосфорилированы гидроксильные группы серина).


АТФ + ГС – ОН протеинкиназа АДФ + ГС – О – Р – ОН

Гликогенсинтаза I Гликогенсинтаза D

I-форма гликогенсинтазы более активна, чем D-форма, однако, D-форма является аллостерическим ферментов, активируемым специфическим оферентом – глюкоза-6-Ф . В покоящейся мышце фермент находится в I-форме не фосфорилир. активной форме , в сокращающей мышце фермент фосфорилирован D-формой и почти неактивен. В присутствии достаточно высокой концентрации глюкозо-6-фосфата D-форма проявляет полную активность. Следовательно , фосфорилирование и дефосфорилирование гликоген синтазы играет ключевую роль в тонкой регуляции синтеза гликогена.

Регуляция синтеза гликогена :

В регуляции сахара в крови большую роль играет ряд эндокринных желез, в частности поджелудочная железа.

Инсулин образуется в В-клетках островков Лангерганса поджелудочной железы в виде проинсулина . При превращении в инсулин полипептидная цепь проинсулина расщепляется в двух точках, вычленяется средний неактивный фрагмент из 22 аминокислотных остатков.

Инсулин снижает содержание сахара в крови, задерживает распад гликогена в печени и способствует отложению гликогена в мышцах.

Гормон глюкагон действует в противоположность инсулину как гиперглинемический.

Надпочечники также принимают участие в регуляции содержания сахара в крови. Импульсы со стороны ЦНС вызывают добавочное выделение адреналина, образующегося в мозговом веществе надпочечников. Адреналин повышает активность фермента фосфогилазы , который стимулирует расщепление гликогена. В результате содержание сахара в крови повышается. Наступает так называемый гипергликелин (эмоциональное возбуждение перед стартом, перед экзаменом).



Кортикостероиды в отличие от адреналина стимулируют образование глюкозы из безазотистых остатков аминокислот.

Гликогенолиз

Благодаря способности к отложению гликогена в основном в печени и мышцах, и в меньшей степени в других органах и тканях создаются условия для накопления в норме резервов углеводов. При повышении энергозатрат происходит усиление распада гликогена до глюкозы.

Мобилизация гликогена может протекать двумя путями: 1-й – фосфоролитическим и 2-ой – гидролитическим .

Фосфоролиз играет ключевую роль в мобилизации гликогена, переводя его из запасной в метаболически активную форму в присутствии фермента фосфорилазы.

Рис.3 Гормональная регуляция фосфоролитического отщепления остатка глюкозы от гликогена.

Процесс распада гликогена начинается с действия гормонов адреналина и глюкагона, которые неактивную аденилатциклазу переводят в активную. Она в свою очередь способствует образованию из АТФ – цАМФ. Под действием активной протеинкиназы и киназы фосфорилазы «в» происходит превращение неактивной фосфорилазы «в» в активную «а».

Фермент фосфорилаза существует в двух формах: фосфорилазы «в» - неактивная (димер), фосфорилазы «а» - активная (тетрамер). Каждая из субъединиц содержит остаток фосфосерина, который имеет важное значение для каталитической активности и молекулу кофермента пиридоксальфосфата, связанную ковалентной связью с остатком лизина.

2 м. фосфорилазы «в» + 4 АТФ Mg ++ 1м. фосфорилазы «а» + 4 АДФ

Киназа фосфорилазы активная действует на гликоген в присутствии Н 3 РО 4 , что приводит к образованию глюкозо-1-фосфата. Образовавшийся глюкозо-1-фосфат под действием фосфоглюкомутазы превращается в глюкозо-6-фосфат. Образование свободной глюкозы происходит под действием глюкозо-6-фосфатазы.

Глюконеогенез

Синтез гликогена может осуществляться и из неуглеводных субстратов, этот процесс получил название глюконеогенеза . Субстратом в глюконеогенезе может выступить лактат (молочная кислота), образовавшаяся при анаэробном окислении глюкозы

(гликолизе). За счет простого обращения реакций гликолиза этот процесс протекать не может из-за нарушения констант равновесия, катализируемых рядом ферментов .

Рис.4 Гликолиз и глюконеогенез

Обращение этих реакций достигается в результате следующих процессов:

Основной путь превращения ПВК в оксалоацетат локализован в митохондриях . После прохождения через мембрану митохондрий

ПВК карбоксилируется до оксалоацетата и выходит из митохондрий в форме малата (этот путь в количественном отношении более важен) и вновь в цитоплазме превращается в оксалоацетат . Образовавшийся оксалоацетат в цитоплазме происходит его превращение до глюкозы-6-Ф. Дефосфорилирование ее осуществляется глюкозо-6-фосфатазой в эндоплазматической ретикулуме, до глюкозы .

Гликолиз

Гликолиз – сложный ферментативный процесс превращения глюкозы, протекающий при недостаточном потреблении О 2 . Конечным продуктом гликолиза является молочная кислота.

Рис.4 Гликолиз и глюконеогенез

Суммарное уравнение гликолиза можно представить следующим образом:

С 6 Н 12 О 6 + 2АДФ + 2Ф Н 2CН 3 СН(ОН)СООН + 2АТФ + 2Н 2 О

Биологическое значение гликолиза :

I. Обратимость гликолиза – из молочной кислоты вследствие глюконеогенеза может образоваться глюкоза.

II. Образование фосфорилированных соединений – гексоз и триоз, которые легче превращаются в организме.

III. Процесс гликолиза очень важен в условиях высокогорья, при кратковременной физической нагрузке, а так же при заболеваниях, сопровождающихся гипоксией.

Биологическая химия Лелевич Владимир Валерьянович

Переваривание углеводов

Переваривание углеводов

В слюне содержится фермент?-амилаза, расщепляющая?-1,4-гликозидные связи внутри молекул полисахаридов.

Переваривание основной массы углеводов происходит в двенадцатиперстной кишке под действием ферментов панкреатического сока – ?-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидаза (терминальной декстриназы).

Ферменты, расщепляющие гликозидные связи в дисахаридах (дисахаридазы), образуют ферментативные комплексы, локализованные на наружной поверхности цитоплазматической мембраны энтероцитов.

Сахаразо-изомальтазный комплекс – гидролизует сахарозу и изомальтозу, расщепляя?-1,2 – и?-1,6-гликозидные связи. Кроме того обладает мальтазной и мальтотриазной активностью, гидролизуя?-1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, образующийся из крахмала).

Гликоамилазный комплекс – катализирует гидролиз?-1,4-связей между глюкозными остатками в олисахаридах, действуя с восстанавливающего конца. Расщепляет также связи в мальтозе, действуя как мальтаза.

Гликозидазный комплекс (лактаза) – расщепляет?-1,4-гликозидные связи в лактозе.

Трегалаза – также гликозидазный комплекс, гидролизующий связи между мономерами в трегалозе – дисахариде, содержащемся в грибах. Трегалоза состоит из двух глюкозных остатков, связанных гликозидной связью между первыми аномерными атомами углерода.

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

ОБМЕН УГЛЕВОДОВ Следует еще раз подчеркнуть, что процессы, происходящие в организме, представляют собой единое целое, и только для удобства изложения и облегчения восприятия рассматриваются в учебниках и руководствах в отдельных главах. Это относится и к разделению на

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Значение углеводов Углеводы играют особую роль среди веществ, поступающих в организм с пищей, поскольку именно они являются основным, а для нервных элементов – единственным источником энергии для клеток. Поэтому уровень углеводов в крови – один из важнейших

Из книги автора

Психотропный эффект углеводов Хлещет вверх моя глюкоза! В час последний, роковой В виде уха, в виде розы Появись передо мной. Н. Олейников Как было описано в предыдущем разделе, введение углеводов в организм улучшает состояние животных или человека со слабым

Из книги автора

Гуморальные влияния на различные этапы обмена углеводов Рассмотрим превращения углеводов, поступающих в организм с пищей (рис. 2.11). Рис. 2.11. Схема превращения углеводов в организме (Е означает «энергия»). Поступление глюкозы в кровь происходит в результате того, что в

Из книги автора

Метаболическая и гедонистическая функция углеводов Необходимость поддержания определенного уровня глюкозы в крови обеспечивается на поведенческом уровне наличием гедонистической потребности в сладком, которая имеется у всех животных. Даже если сыты, они охотно

Из книги автора

Нарушения переваривания и всасывания углеводов В основе патологии переваривания и всасывания углеводов могут быть причины двух типов:1. Дефекты ферментов, участвующих в гидролизе углеводов в кишечнике.2. Нарушения всасывания продуктов переваривания углеводов в клетки

Из книги автора

Глава 19. Липиды тканей, переваривание и транспорт липидов Липиды – неоднородная в химическом отношении группа веществ биологического происхождения, общим свойством которых является гидрофобность и способность растворяться в неполярных органических растворителях.

Из книги автора

Липиды пищи, их переваривание и всасывание. Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности

Из книги автора

Переваривание белков в желудочно-кишечном тракте Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других пищеварительных соков сильно кислой реакцией, благодаря присутствию

Углеводы пищи, нормы и принципы нормирования их суточной пищевой потребности. Биологическая роль.

В пище человека в основном содержатся по­лисахариды - крахмал, целлюлоза растений, в меньшем количестве - гликоген животных. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник.Лактоза поступает с молоком млекопитающих (в коровьем мо­локе до 5% лактозы, в женском мо­локе - до 8%). Фрукты, мёд, соки содер­жат небольшое количество глюкозы и фруктозы. Мальтоза есть в солоде, пиве.

Углеводы пищи являются для организма человека в основном источником моносахаридов, преимущественно глюкозы. Некоторые полисахариды: целлюлоза, пектиновые вещества, декстраны, у человека практически не перевариваются, в ЖКТ они выполняют функцию сорбента (выводят холестерин, желчные кислоты, токсины и д.р.), необходимы для стимуляции перистальтики кишечника и формирования нормальной микрофлоры.

Углево­ды - обязательный компонент пищи, они составляют 75% массы пищевого рациона и дают более 50% необходимых калорий. У взрослого человека суточная потребность в углеводах 400г/сут, в целлюлозе и пектине до 10-15 г/сут. Рекомендуется употреблять в пищу больше сложных полисахаридов и меньше моносахаров.

Переваривание углеводов

Переваривание это процесс гидролиза веществ до их ассимилируемых форм. Переваривание бывает: 1) Внутриклеточное (в лизосомах); 2) Внеклеточное (в ЖКТ): а) полостное (дистантное); б) пристеночное (контактное).

Переваривание углеводов в ротовой полости (полостное)
В ротовой полости пища измельчается при пе­режёвывании и смачивается слюной. Слюна состоит на 99% из воды и обычно имеет рН 6,8. В слюне присутствует эндогликозидаза α -амилаза (α-1,4-гликозидаза), расщеп­ляющая в крахмале внутренние α-1,4-гликозидные связи с об­разованием крупных фрагментов - декстринов и небольшого количества мальтозы и изомальтозы.

Переваривание углеводов в желудке (полостное)
Действие амилазы слюны прекращается в кислой среде (рН <4) содержимого желудка, однако, внутри пищевого комка ак­тивность амилазы может некоторое время сохраняться. Желудочный сок не содержит фермен­тов, расщепляющих углеводы, в нем возможен лишь незначительный кислотный гидролиз гликозидных связей.

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)
В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5-8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α -амилаза . Эта эндогликозидаза гидролизует внутренние α-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3-8 остатков глюкозы, свя­занных α-1,4- и α-1,6-гликозидными связями.

Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.

Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изомальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше в проксимальнойи дистальной частях кишечника.

Гликоамилазный комплекс , содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.

β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.

Трегалаза - гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе - дисахариде грибов.

Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.

Всасывание углеводов
Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na + . Через белок-переносчик Na + двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na + создаётся Nа + /К + -АТФ-азой.

При низкой концентрации глюкозы в просвете кишечника она транспортируется в энтероцит только активным транспортом, при высокой концентрации - активным транспортом и облегчённой диффузией. Скорость всасывания: галактоза > глюкоза > фруктоза >другие моносахариды. Моносахариды выходят из энтероцитов в направлении кровеносного капилляра с помощью облегченной диффузии - через белки-переносчики.

Питание современного человека «бьется» в такт с активным ритмом жизни. Одни «глотают на ходу», так как нет времени остановиться в суетливом потоке и насладиться трапезой. Другие, заядлые спортсмены, воспринимают пищу только как источник роста мышечных объемов. Третьи – все и вся (проблемы, стрессы) заедают «вкусняшками». Не будем разбирать правильно ли это, а обратимся вот к какому вопросу. Кто хоть раз задумывался, что происходит с едой после того, как она попадает в желудок? Полагаем, что единицы. А ведь от того, как переваривается пища, зависит правильная работа ЖКТ и здоровья человека в целом. Попробуем разобраться с этими вопросами. А также узнаем, сколько времени переваривается пища, какая усваивается быстрее, какая медленнее (таблицы) и многое другое.

Немногие из вас знают, что процесс переваривания и усваивания продуктов питания прямо влияет на крепкое здоровье человека. Зная, как устроен наш организм, мы с легкостью можем откорректировать свой рацион и сделать его сбалансированным. От того, сколько времени переваривается пища, зависит работа всей системы пищеварения. Если органы ЖКТ функционируют правильно, то не нарушается обмен веществ, нет проблем с лишним весом и организм полностью здоров.

Как устроен обмен веществ?

Начнем с понятия «переваривание пищи». Это совокупность биохимических и механических процессов, вследствие которых еда измельчается и расщепляется на полезные организму питательные вещества (минералы, витамины, макро- и микроэлементы).

Из ротовой полости пища попадает в желудок, где под воздействием желудочного сока она становится жидкой. По времени этот процесс длится 1-6 часов (в зависимости от съеденного продукта). Далее трапеза двигается в 12-перстную кишку (начало тонкого кишечника). Здесь пища под воздействием ферментов распадается на необходимые питательные вещества. Белки превращаются в аминокислоты, жиры в жирные кислоты и моноглицериды, углеводы – в глюкозу. Всасываясь через стенки кишечника, полученные вещества попадают в кровь и разносятся по всему организму человека.

Переваривание и усвоение – это сложные процессы, которые длятся часами. Человеку важно знать и учитывать факторы, влияющие на скорость этих реакций.

Читайте также -

Сколько времени переваривается еда? От чего зависит длительность этого процесса?

  • От способа обработки поступивших в желудок продуктов, наличия жира, специй и так далее.
  • Сколько времени желудок переваривает пищу, зависит от ее температуры . Скорость усвоения холодного намного ниже горячего. Но и та и другая температура пищевого комка мешает нормальному пищеварению. Холодное попадает в нижние этажи ЖКТ раньше времени, захватывая с собой комки еще непереваренной пищи. Слишком горячее блюдо обжигает слизистую пищевода. Оптимальная температура для нашего желудка – теплая еда.
  • От сочетаемости потребляемых продуктов питания. Например, мясо, рыба и яйцо – белковая закуска, которая переваривается разное время. Если съесть их за один прием, то желудок окажется в недоумении, не зная какой белок переваривать первым. Яйцо переваривается быстрее и вместе с ним в тонкий кишечник может проскочить недопереваренный кусок мяса. Это может привести к процессам брожения и даже гниения.

По скорости усвоения и сочетаемости выделяют три основные категории пищи :


Как и где перевариваются углеводы?

Расщепление углеводов осуществляется под действием такого фермента, как амилаза. Последняя содержится в слюнных и поджелудочных железах. Поэтому углеводная пища начинает перевариваться еще в ротовой полости. В желудке она не переваривается. Желудочный сок имеет кислую среду, которая тормозит действие амилазы, нуждающейся в щелочной рН. Где же все-таки перерабатываются углеводы – в 12-перстной кишке. Здесь они окончательно перевариваются. Под действием фермента поджелудочной железы гликоген превращается в питательные вещества дисахариды. В тонком кишечнике они преобразуются в глюкозу, галактозу или фруктозу.

Углеводы бывают 2-х видов – простые (быстрые) и сложные (медленные). Сколько времени они перевариваются, зависит от их типа. Сложные вещества перевариваются медленнее и с такой же скоростью усваиваются. Сколько по времени они находятся в пищеварительном тракте, смотрите таблицы выше.

Как долго перевариваются быстрые (простые) углеводы (таблица) ? Кстати, эта группа питательных веществ способствует практически моментальному повышению уровня сахара в крови.

Читайте также -

Как и где перевариваются жиры?

Нелюбовь к жирам – традиционна и поддерживается многими диетологами. С чем это связано? – С их высокой калорийностью. На 1 грамм приходится целых 9 ккал. Тем не менее, жиры в рационе человека – важны. Они являются ценнейшим источником энергии организма. От их наличия в рационе зависит усвоение витаминов A, D, E и других. Кроме того, пища богатая полезными жирами благоприятно влияет на весь пищеварительный процесс. К таким продуктам относится мясо и рыба, оливковое масло, орехи. Но есть и вредные жиры – жареные блюда, фастфуд, кондитерские изделия.

Как же и где перевариваются жиры в организме человека? – Во рту такая пища не подвергается никаким изменениям, так как в слюне нет ферментов, способных расщеплять жиры. В желудке также нет нужных условий для переваривания этих веществ. Остаются – верхние отделы тонкого кишечника, то есть 12-перстная кишка.

-->

Как и где перевариваются белки?

Белки – еще один важный элемент питания каждого человека. Их рекомендуется употреблять на завтрак и обед вместе с пищей, богатой клетчаткой.

Сколько по времени перевариваются белки, зависит от следующих факторов :

  • Происхождение белков – животные и растительные (смотрите таблице выше).
  • Состав . Известно, что протеины имеют определенный набор аминокислот. Недостаток одной может препятствовать правильному усвоению других.

Белки начинают перевариваться в желудке. В желудочном соке присутствует пепсин, способный справиться с этой сложной задачей. Далее расщепление продолжается в 12-перстной кишке и заканчивается в тонком кишечнике. В ряде случаев конечным пунктом переваривания является толстая кишка.

Вместо заключения

Теперь мы знаем, сколько времени переваривается пища в организме человека.

Что еще важно знать :

  • Если выпить стакан воды на голодный желудок, то жидкость попадает сразу в кишечник.
  • Нельзя пить напитки после еды. Жидкость разбавляет желудочный сок, что мешает ей перевариваться. Так вместе с водой в кишечник могут попасть непереваренные продукты. Последнее вызывает процессы брожения и даже гниения.
  • Чтобы увеличить скорость усвоения пищи, ее следует тщательнее пережевывать в ротовой полости.
  • Вечером рекомендуется потреблять продукты 1-ой и 2-ой группы (смотрите таблицу выше).
  • Лучше не есть за один прием пищу с разным временем переваривания в желудке.
  • Продукты четвертой категории должны присутствовать в минимальном объеме в рационе.
  • Чтобы семена и орехи быстрее усвоились, их рекомендуется растолочь и замочить на ночь в воде.

Перед отправкой в холодильник продукты питания, судочки, тарелки, банки с остатками напитков следует накрыть, чтобы они сохранили свою свежесть. С решением этой проблемы отлично справляются эластичные силиконовые крышки. Они изготовлены из специального пищевого силикона. Крышки герметичны, воздухонепронецаемы, поэтому продукты всегда остаются свежими. Приобрести по выгодной цене можно

В пищевом рационе человека встречаются только три основных источника углеводов: (1) сахароза, которая является дисахаридом и широко известна как тростниковый сахар; (2) лактоза, являющаяся дисахаридом молока; (3) крахмал - полисахарид, представленный практически во всей растительной пище, в особенности в картофеле и различных видах зерновых. Другими углеводами, усваиваемыми в небольшом количестве, являются амилоза, гликоген, алкоголь, молочная кислота, пиро-виноградная кислота, пектины, декстрины и в наименьшем количестве - производные углеводов в мясе.

Пища также содержит большое количество целлюлозы, которая является углеводом. Однако в пищеварительном тракте человека не существует фермента, способного расщепить целлюлозу, поэтому целлюлоза не рассматривается как пищевой продукт, пригодный для человека.

Переваривание углеводов в ротовой полости и желудке. Когда пища пережевывается, она смешивается со слюной, которая содержит пищеварительный фермент птиалин (амилазу), секретирующийся в основном околоушными железами. Этот фермент гидролизует крахмал на дисахарид мальтозу и другие небольшие глюкозные полимеры, содержащие от 3 до 9 молекул глюкозы. Однако в ротовой полости пища находится короткое время, и, вероятно, до акта глотания гидролизуется не более 5% крахмала.

Тем не менее, переваривание крахмала иногда продолжается в теле и дне желудка еще в течение 1 ч до тех пор, пока пища не начнет перемешиваться с желудочным секретом. Затем активность амилазы слюны блокируется соляной кислотой желудочного секрета, т.к. амилаза как фермент в принципе не активна при снижении рН среды ниже 4,0. Несмотря на это, в среднем до 30-40% крахмала гидролизуется в мальтозу прежде, чем пища и сопутствующая ей слюна полностью перемешаются с желудочными секретами.

Переваривание углеводов в тонком кишечнике . Переваривание панкреатической амилазой. Секрет поджелудочной железы, как и слюна, содержит большое количество амилазы, т.е. он почти полностью схож в своих функциях с ос-амилазой слюны, но в несколько раз эффективнее. Таким образом, не более чем через 15-30 мин после того, как химус из желудка попадет в двенадцатиперстную кишку и смешается с соком поджелудочной железы, фактически все углеводы оказываются переваренными.

В результате прежде чем углеводы выйдут за пределы двенадцатиперстной кишки или верхнего отдела тощей кишки, они почти полностью превращаются в мальтозу и/или в другие очень небольшие полимеры глюкозы.

Гидролиз дисахаридов и небольших полимеров глюкозы в моносахариды ферментами кишечного эпителия. Энтероциты, выстилающие ворсинки тонкого кишечника, содержат четыре фермента (лактазу, сахаразу, мальтазуи декстриназу), способных расщеплять дисахариды лактозу, сахарозу и мальтозу, а также другие небольшие глюкозные полимеры на их конечные моносахариды. Эти ферменты локализованы в микроворсинках щеточной каемки, покрывающей энтероциты, поэтому дисахариды перевариваются сразу, как только соприкасаются с этими энтероцитами.

Лактоза расщепляется на молекулу галактозы и молекулу глюкозы. Сахароза расщепляется на молекулу фруктозы и молекулу глюкозы. Мальтоза и другие небольшие глюкозные полимеры расщепляются на многочисленные молекулы глюкозы. Таким образом, конечными продуктами переваривания углеводов являются моносахариды. Все они растворяются в воде и мгновенно всасываются в портальный кровоток.

В обычной пище , в которой из всех углеводов больше всего крахмала, более 80% конечного продукта переваривания углеводов составляет глюкоза, а галактоза и фруктоза - редко более 10%.