Компьютерная система счисления состоит из символов. Алфавитные системы счисления

На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая бóльшее число предметов, объединялась в понятии «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки. В древнем Новгороде использовалась славянская система, где применялись буквы славянского алфавита; при изображении чисел над ними ставился знак ~ (титло).

Древние римляне пользовались нумерацией, сохраняющейся до настоящего времени под именем «римской нумерации», в которой числа изображаются буквами латинского алфавита. Сейчас ею пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д. В позднейшем своем виде римские цифры выглядят так:

I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явственно сказываются следы пятеричной системы счисления. Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом, если бóльшая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед бóльшей (в этом случае она не может повторяться), то меньшая вычитается из бóльшей). Например, VI = 6, т.е. 5 + 1, IV = 4, т.е. 5 – 1, XL = 40, т е. 50 – 10, LX = 60, т.е. 50 + 10. Подряд одна и та же цифра ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так:

I, II, III, IV, V, VI, VII, VIII. IX, X, XI, XII.

Другие же числа записываются, например, как:

XXVIII = 28; ХХХIХ = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Тем не менее, римская нумерация преобладала в Италии до 13 в., а в других странах Западной Европы – до 16 в.

В славянской системе нумерации для записи чисел использовались все буквы алфавита, правда, с некоторым нарушением алфавитного порядка. Различные буквы означали различное количество единиц, десятков и сотен. Например, число 231 записывалось в виде ~ СЛА (C – 200, Л – 30, А – 1).

Этим системам свойственны два недостатка, которые привели к их вытеснению другими: необходимость большого числа различных знаков, особенно для изображения больших чисел, и, что еще важнее неудобство выполнения арифметических операций.

Более удобной и общепринятой и наиболее распространенной является десятичная система счисления, которая была изобретена в Индии, заимствована там арабами и затем через некоторое время пришла в Европу. В десятичной системе счисления основанием является число 10.

Существовали системы исчисления и с другими основаниями. В Древнем Вавилоне, например, применялась шестидесятеричная система счисления. Остатки ее мы находим в сохранившемся до сих пор делении часа или градуса на 60 минут, а минуты – на 60 секунд.

Широкое распространение имела в древности и двенадцатеричная система, происхождение которой, вероятно, связано, как и десятичной системы, со счетом на пальцах: за единицу счета принимались фаланги (отдельные суставы) четырех пальцев одной руки, которые при счете перебирались большим пальцем той же руки. Остатки этой системы счисления сохранились и до наших дней и в устной речи, и в обычаях. Хорошо известно, например, название единицы второго разряда – числа 12 – «дюжина». Сохранился обычай считать многие предметы не десятками, а дюжинами, например, столовые приборы в сервизе или стулья в мебельном гарнитуре. Название единицы третьего разряда в двенадцатеричной системе – гросс – встречается теперь редко, но в торговой практике начала столетия оно еще бытовало. Например, в написанном в 1928 стихотворении Плюшкин В.В.Маяковский, высмеивая людей, скупающих все подряд, писал: «...укупил двенадцать гроссов дирижерских палочек». У ряда африканских племен и в Древнем Китае была употребительна пятеричная система счисления. В Центральной Америке (у древних ацтеков и майя) и среди населявших Западную Европу древних кельтов была распространена двадцатеричная система. Все они также связаны со счетом на пальцах.

Самой молодой системой счисления по праву можно считать двоичную. Эта система обладает рядом качеств, делающей ее очень выгодной для использования в вычислительных машинах и в современных компьютерах.

Позиционные и непозиционные системы счисления.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами.

В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки.

Однако наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр.

Различие между позиционой и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бóльшая цифра соответствует бóльшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI.

Позиционные системы счисления.

Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 555 7 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы – это тоже число, и его мы будем указывать в обычной десятичной системе. Вообще, число x может быть представлено в системе с основанием p , как x = a n ·p n +a n – 1·p n –1 + a p 1 + a p 0, где a n ...a 0 – цифры в представлении данного числа. Так, например,

1035 10 =1·10 3 + 0·10 2 + 3·10 1 + 5·10 0 ;

1010 2 = 1·2 3 + 0·2 2 + 1·2 1 + 0·2 0 = 10.

Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Вообще говоря, этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32.

Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме.

Почему же не используются другие системы счисления? В основном, потому, что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто.

Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются.

Перевод чисел из одной системы счисления в другую.

Наиболее часто встречающиеся системы счисления – это двоичная, шестнадцатеричная и десятичная. Как же связаны между собой представления числа в различных системах счисления? Есть различные способы перевода чисел из одной системы счисления в другую на конкретных примерах.

Пусть нужно перевести число 567 из десятичной в двоичную систему. Сначала определяется максимальная степень двойки, такая, чтобы два в этой степени было меньше или равно исходному числу. В данном случае это 9, т.к. 2 9 = 512, а 2 10 = 1024, что больше начального числа. Таким образом получается число разрядов результата, оно равно 9 + 1 = 10, поэтому результат будет иметь вид 1ххххххххх , где вместо х могут стоять любые двоичные цифры. Вторая цифра результата находится так – двойка возводится в степень 9 и вычитается из исходного числа: 567 – 2 9 = 55. Остаток сравнивается с числом 2 8 = 256. Так как 55 меньше 256, то девятый разряд – нуль, т.е. результат имеет вид 10хххххххх . Рассмотрим восьмой разряд. Так как 2 7 = 128 > 55, то и он будет нулевым.

Седьмой разряд также оказывается нулевым. Искомая двоичная запись числа принимает вид 1000хххххх . 2 5 = 32 ххххх). Для остатка 55 – 32 = 23 справедливо неравенство 2 4 = 16

567 = 1·2 9 + 0·2 8 + 0·2 7 + 0·2 6 + 1·2 5 + 1·2 4 + 0·2 3 + 1·2 2 + 1·2 1 + 1·2 0

При другом способе перевода чисел используется операция деления в столбик. Если взять то же число 567 и разделить его на 2, получается частное 283 и остаток 1. Та же операция производится и с числом 283. Частное – 141, остаток – 1. Опять полученное частное делится на 2 и так до тех пор, пока частное не станет меньше делителя. Теперь, чтобы получить число в двоичной системе счисления, достаточно записать последнее частное, т.е. 1, и приписать к нему в обратном порядке все полученные в процессе деления остатки.

Результат, естественно, не изменился: 567 в двоичной системе счисления записывается как 1 000 110 111.

Эти два способа применимы при переводе числа из десятичной системы в систему с любым основанием. Например, при переводе числа 567 в систему счисления с основанием 16 число сначала разлагается по степеням основания. Искомое число состоит из трех цифр, т.к. 16 2 = 256 хх, где вместо х могут стоять любые шестнадцатеричные цифры. Остается распределить по следующим разрядам число 55 (567 – 512). 3·16 = 48

Второй способ состоит в последовательном делении в столбик, с единственным отличием в том, что делить надо не на 2, а на 16, и процесс деления заканчивается, когда частное становится строго меньше 16.

Конечно, для записи числа в шестнадцатеричной системе счисления, необходимо заменить 10 на A, 11 на B и так далее.

Операция перевода в десятичную систему выглядит гораздо проще, так как любое десятичное число можно представить в виде x = a p n + a p n –1 +... + a n –1·p 1 + a n ·p 0, где a 0 ... a n – это цифры данного числа в системе счисления с основанием p .

Например,так можно перевести число 4A3F в десятичную систему. По определению, 4A3F= 4·16 3 + A·16 2 + 3·16 + F. При замене A на 10, а F на 15, получается 4·16 3 + 10·16 2 + 3·16 + 15= 19007.

Проще всего переводить числа из двоичной системы в системы с основанием, равным степеням двойки (8 и 16), и наоборот. Для того чтобы целое двоичное число записать в системе счисления с основанием 2 n , нужно данное двоичное число разбить справа налево на группы по n -цифр в каждой; если в последней левой группе окажется меньше n разрядов, то дополнить ее нулями до нужного числа разрядов; рассмотреть каждую группу, как n -разрядное двоичное число, и заменить ее соответствующей цифрой в системе счисления с основанием 2 n .

Таблица 1. Двоично-шестнадцатеричная таблица
Таблица 1. ДВОИЧНО-ШЕСТНАДЦАТЕРИЧНАЯ ТАБЛИЦА
2-ная 0000 0001 0010 0011 0100 0101 0110 0111
16-ная 0 1 2 3 4 5 6 7
2-ная 1000 1001 1010 1011 1100 1101 1110 1111
16-ная 8 9 A B C D E F

Известный французский астроном, математик и физик Пьер Симон Лаплас (1749–1827) писал об историческом развитии систем счисления, что «Мысль выражать все числа девятью знаками, придавая им, кроме значения по форме, еще значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко было прийти к этому методу, мы видим на примере величайших гениев греческой учености Архимеда и Аполлония, от которых эта мысль осталась скрытой.»

Сравнение десятичной системы исчисления с иными позиционными системами позволило математикам и инженерам-конструкторам раскрыть удивительные возможности современных недесятичных систем счисления, обеспечившие развитие компьютерной техники.

Анна Чугайнова

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАЗВА УЧБОВОГО ЗАКЛАДУ

Разновидности систем счисления

Понятие системы счисления. Виды систем счисления

Система счисления -- совокупность нескольких названий и знаков, позволяющая записать любое число и дать ему имя.

Система счисления:

· даёт представления множества чисел (целых и/или вещественных);

· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

· отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на:

· Позиционные;

· Непозиционные;

· Смешанные.

Позиционные системы счисления

Позиционная система счисления -- это система, в которой значение каждой цифры зависит от ее числового эквивалента и от ее места (позиции) в числе, т.е. один и тот же символ (цифра) может принимать различные значения.

Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам. Развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации.

Наиболее известной позиционной системой счисления является десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Любая позиционная система счисления характеризуется основанием. Основание или базис (n) естественной позиционной системы счисления -- это количество знаков или символов, используемых для изображения числа в данной системе. Поэтому, возможно бесчисленное множество позиционных систем, т.к. за основание можно принять любое натуральное число n>1, образовав новую систему счисления.

Когда представляют или записывают, некоторое число в позиционной системе счисления, размещают соответствующие цифры числа по отдельным нужным позициям, которые принято называть разрядами числа в данной позиционной системе счисления. Количество разрядов в записи числа называется разрядностью числа и совпадает с его длиной.

Общая система счисления может быть определена, как такая группировка целых и дробных чисел, при которой каждое из них представляется формулой:

где x -- произвольное число, записанное в системе счисления с основанием n; символ ai -- коэффициент ряда, т.е. i-таю цифра записи числа; k, m -- количество целых и дробных разрядов соответственно.

Каждая степень nk в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k (номера разряда). Номера разрядов в позиционной системе счисления отсчитываются в целой части влево от запятой, а в дробной -- вправо от запятой. Причем, нумерация разрядов начинается с 0. Величина основания позиционной системы счисления определяет ее название: для десятичной системы это будет 10, для восьмеричной -- 8, для двоичной -- 2 и т.д. Обычно вместо названия системы счисления используют термин "код числа". Например, под понятием двоичный код подразумевается число, представленное в двоичной системе счисления, под понятием десятичный код - в десятичной системе счисления и т.д.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x записывают в виде последовательности его n-ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Наиболее употребляемыми в настоящее время позиционными системами являются:

· 2 -- двоичная (в дискретной математике, информатике, программировании);

· 3 -- троичная (в троичных ЭВМ (например, «Сетунь»));

· 8 -- восьмеричная (используется в программировании, информатике);

· 10 -- десятичная (используется повсеместно);

· 12 -- двенадцатеричная (счёт дюжинами);

· 16 -- шестнадцатеричная (используется в программировании, информатике);

· 60 -- шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Двоичная система счисления -- позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях, двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах. В двоичной системе счисления числа записываются с помощью двух символов (0 и 1). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 510, в двоичной 1012. Иногда двоичное число обозначают префиксом 0b, например 0b101.

Правила переводов

Перевод из любой системы счисления в десятичную систему счисления

Для перевода целого числа из любой системы счисления в десятичную, необходимо записать данное число в общем виде:

anbn+an-1bn-1+an-2bn-2+...+a2b2+a1b1+a0b0

Например: переведем число 12568 в десятичную систему счисления.

12568=1·83 +2·82 +5·81 +6·80 =1·512+2·64+5·8+6·1=68610.

Перевод числа из десятичной системы счисления в другую систему

1) Делим данное число на основание той системы, в которую необходимо перевести число.

2) Полученное число делим аналогично на основание системы, в которую необходимо перевести число.

3) Пункт 2 повторяем до тех пор пока, полученное частное не будет меньше основания.

4) Выписываем остатки от деления в порядке от последнего к первому.

Правило перевода чисел из двоичной системы счисления в восьмеричную

1) Разбиваем число по три цифры на группы начиная с младшего разряда.

Если не хватает до целой тройки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную тройку цифр заменяем цифрой из восьмеричной системы счисления.

Двоичные триады

Восьмеричные цифры

3) Дробную часть разбиваем на тройки вправо от запятой.

Перевод чисел из двоичной системы счисления в шестнадцатеричную

1) Разбиваем число по четыре цифры на группы начиная с младшего разряда.

Если не хватает до целой четверки цифр, то добавляем необходимое количество нулей слева.

2) Каждую полученную четверку цифр заменяем цифрой из восьмеричной системы счисления.

3) Дробную часть разбиваем на четверки вправо от запятой.

Если не хватает цифр, то приписываем нули справа.

Правило перевода чисел из восьмеричной системы счисления в двоичную

1) Заменяем каждую цифру данного восьмеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной тройки не хватает цифр, то в данной тройке добавляем недостающее количество нулей слева.

Перевод чисел из шестнадцатеричной системы счисления в двоичную

1) Заменяем каждую цифру данного шестнадцатеричного числа соответствующим ей двоичным эквивалентом.

2) Если до полной четверки не хватает цифр, то в данной четверке добавляем недостающее количество нулей справа.

Необычные позиционные системы счисления

Необычные счисления не находят широкого применения, однако они могут быть интересными с точки зрения теории. Среди необычных систем счисления можно выделить: счисление позиционный символический знак

· системы счисления с ненатуральными основаниями

o отрицательными,

o иррациональными,

o комплексными (напр.: 1 + i);

· системы счисления с несколькими основаниями;

o вложенными (двоично-десятичная, десятично-шестидесятеричная и др.)

· системы счисления с нестандартными наборами цифр:

с набором цифр, симметричным относительно нуля.

Системы счисления с отрицательными основаниями

Отрицательные основания позволяют выражать отрицательные числа без введения дополнительного символа для знака. Для выражения чисел используется тот же набор цифр, что и для системы с равным по модулю натуральным основанием. Таким образом, нечётные разряды числа имеют отрицательный вес.

Системы счисления с иррациональным основанием

Иррациональное число вида можно выразить в системе счисления с иррациональным основанием, употребив цифры.

Системы счисления с комплексным основанием

Подобно системам с отрицательным основаниям, комплексные основания позволяют выражать комплексные числа.

Для этого основание системы счисления берётся вида:

удовлетворяющее условию -- количество цифр в наборе.

Системы основания с вложенными основаниями

Если цифры системы счисления с большим основанием представить числами в системе счисления с меньшим основанием, то получится особый составной род системы счисления.

Хорошо известна десятично-шестидесятеричная система счисления, используемая для измерения времени -- часы, минуты и секунды, записанные десятичной системой здесь предстают в качестве разрядов шестидесятеричной системы счисления. Эта система пришла из Вавилона, где широко использовалась для записи чисел шестидесятеричная система, основанная всего на трёх клинописных символах:

· вертикльный клин -- единица разряда;

· уголок из клиньев -- десяток разряда;

· наклонный клин -- нуль, пустой разряд;

Двоично-десятичная система счисления используется в вычислительной технике. Двоичные разряды группируются по четыре, где каждая четвёрка (тетрада, ниббл) кодирует одну десятичную цифру. Это позволяет работать с приборами, имеющими десятичную индикацию и ввод без преобразования систем счисления.

Нестандартные наборы цифр, наборы, симметричные относительно нуля

Альтернативным способом записи отрицательных чисел без использования знака минуса (кроме отрицательных оснований) является использование цифр с отрицательным весом. При этом не требуется увеличения количества различных цифр для записи числа -- вместо набора можно использовать любой набор вида.

Замечательным в этом отношении является использование симметричного набора цифр. Если взять систему счисления с нечётным основанием вида 2p + 1, то набор цифр будет иметь вид.

Такой подход нашёл применение в троичных ЭВМ (например, «Сетунь»).

Смешанная система счисления

Смешанная система счисления является обобщением n-ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел, и каждое число в ней представляется как линейная комбинация:

В зависимости от вида ni как функции смешанные системы счисления могут быть степенными, показательными, факториальными, фибоначчиевыми и т. п. Когда для некоторого n, смешанная система счисления совпадает с показательной n-ричной системой счисления.

Самый яркий пример смешанной системы счисления -- это представление времени в виде количества суток, часов, минут и секунд. При этом величина «d дней, h часов, m минут, s секунд» соответствует значению

Непозиционные системы счисления

Непозиционная система счисления -- это система, для которой значение символа, т.е. цифры, не зависит от его положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

В биномиальной системе счисления число x представляется в виде суммы биномиальных коэффициентов:

При всяком фиксированном значении n каждое натуральное число представляется уникальным образом.

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов, где

СОК гарантирует однозначность представления для чисел из отрезка

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК.

Исторические системы счисления

Единичная система счисления

Хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком -- так возникают прообразы будущих цифр.

Пятеричная система счисления (Счёт на пятки м)

Существовал в России. Применялся в народе как минимум до конца XVIII -- начала XIX вв.

Древнеегипетская система счисления

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 102, 103, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:

I обозначает 1,

Римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё.

Система счисления майя

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом 17 19 сразу следовало число 1 0 0. Это было сделано для облегчения расчётов календарного цикла, поскольку 1 0 0 = 360 примерно равно числу дней в солнечном году.

Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

Кипу инков

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I--II тысячелетии н. э., была узелковая письменность Инков -- кипу, состоявшая как из числовых записей десятичной системы, так и не числовых записей в двоичной системе кодирования. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись.

Список используемой литературы

1. А. Г. Цыпкин. "Справочник по математике для средних учебных заведений"

Размещено на Allbest.ru

...

Подобные документы

    Понятие и математическое содержание систем счисления, их разновидности и сферы применения. Отличительные признаки и особенности позиционных и непозиционных, двоичных и десятичных систем счисления. Порядок перевода чисел из одной системы в другую.

    презентация , добавлен 10.11.2010

    Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.

    реферат , добавлен 09.07.2009

    Исследование истории систем счисления. Описание единичной и двоичной систем счисления, древнегреческой, славянской, римской и вавилонской поместной нумерации. Анализ двоичного кодирования в компьютере. Перевод чисел из одной системы счисления в другую.

    контрольная работа , добавлен 04.11.2013

    Совокупность приемов и правил записи и чтения чисел. Определение понятий: система счисления, цифра, число, разряд. Классификация и определение основания систем счисления. Разница между числом и цифрой, позиционной и непозиционной системами счисления.

    презентация , добавлен 15.04.2015

    Понятие системы счисления. История развития систем счисления. Понятие натурального числа, порядковые отношения. Особенности десятичной системы счисления. Общие вопросы изучения нумерации целых неотрицательных чисел в начальном курсе математики.

    курсовая работа , добавлен 29.04.2017

    Математическая теория чисел. Понятие систем счисления. Применения двоичной системы счисления. Компьютерная техника и информационные технологии. Алфавитное неравномерное двоичное кодирование. Достоинства и недостатки двоичной системы счисления.

    реферат , добавлен 25.12.2014

    История развития систем счисления. Непозиционная, позиционная и десятичная система счисления. Использование систем счисления в компьютерной технике и информационных технологиях. Двоичное кодирование информации в компьютере. Построение двоичных кодов.

    курсовая работа , добавлен 21.06.2010

    Ознакомление с записью чисел в алфавитной системе счисления. Особенности установления числовых значений букв у славянских народов. Рассмотрение записи больших чисел в славянской системе счисления. Обозначение "тем", "легионов", "леордов" и "колод".

    презентация , добавлен 30.09.2012

    Определения системы счисления, числа, цифры, алфавита. Типы систем счисления. Плюсы и минусы двоичных кодов. Перевод шестнадцатеричной системы в восьмеричную и разбитие ее на тетрады и триады. Решение задачи Баше методом троичной уравновешенной системы.

    презентация , добавлен 20.06.2011

    Сущность двоичной, восьмеричной и шестнадцатиричной систем счисления, их отличительные черты и взаимосвязь. Пример алгоритмов перевода чисел из одной системы в другую. Составление таблицы истинности и логической схемы для заданных логических функций.

Система счисления - это способ изображения чисел и соответствующие ему правила действия над числами . Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел , называются цифрами.

В непозиционных системах счисления значение цифры не зависит от положения в числе .

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа - большая, то их значения вычитаются.

Пример 2.

VI = 5 + 1 = 6; IV = 5 – 1 = 4.

Пример 3.

MCMXCVIII = 1000 + (–100 + 1000) +

+ (–10 + 100) + 5 + 1 + 1 + 1 = 1998.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции . Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

101101 2 , 3671 8 , 3B8F 16 .

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числаq .q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа вq -ичной системе счисления требуетсяq различных знаков (цифр), изображающих числа 0, 1, ...,q – 1. Запись числаq вq -ичной системе счисления имеет вид 10.

Развернутая форма записи числа

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основаниемq :X = (a n a n-1 a 1 a 0) q . Нужно найти значащие цифры числа:. Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0 есть остаток от деления числаX на числоq . Выражение в скобках - целое частное от этого деления. Обозначим его заX 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деленияX 1 наq . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифраan в этой цепочке делений будет последним частным, меньшимq .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основаниемq :X = (0,a –1 a –2 …a –m+1 a –m) q . Нужно найти значащие цифры числа:a –1 , a –2 , …,a –m . Представим число в развернутой форме и умножим его наq :

Отсюда видно, что a –1 есть целая часть произведенияX на числоq . Обозначим заX 1 дробную часть произведения и умножим ее наq :

Следовательно, a –2 есть целая часть произведенияX 1 на числоq . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило:для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению. В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтомуперевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.

Как только люди начали считать, у них появилась потребность в записи чисел. Археологи находили на стоянках первобытных людей свидетельства того, что изначально почти любое количество записывалось просто тождественным ему количеством значков: палочек, точек, черточек. Такая система называется единичной (унарной). Любое число в этой системе записывается повторением одного знака, который символизирует единицу.

Не смотря на древность этой системы она используется и по сей день, первоклассников учат считать на палочках, а для определения курса, на котором сейчас обучается курсант военного училища следует посчитать количество полосок, нашитых на его рукаве.

Унарная система - не самый удобный способ записи чисел, запись занимает много места и монотонность записи приводит к ошибкам, поэтому с течением времени начали появляться более удобные системы счисления .

Десятичная древнеегипетская система счисления

У Древних Египтян была весьма удобная система счисления, в ней были знаки обозначающие ключевые числа: 1, 10, 100 и т. д. Остальные числа записывали с помощью сложения. Обозначения некоторых чисел представлено в рисунке 1 .

Сейчас система не используется.

Римская система счисления

Эта система сохранилась без изменений до наших дней. Появилась она более чем две с половиной тысячи лет назад в Древнем Риме. В ее основе лежали знаки I (палец руки) для числа 1, V (пятерня) для числа 5, X (две руки) для числа 10. А для обозначения 100, 500 и 1000 применяли первые буквы латинских названий (centum - сто, demimille - половина тысячи, mille - тысяча). Для того чтобы записать число римляне использовали не только суммы, как египтяне, но и разность. Для этого применялось простое правило: каждый меньший знак стоящий после большего прибавляется к его значению, а стоящий перед большим знаком отнимается от его значения. Таким образом IX - обозначает 9, а XI - 11 .

Римскими цифрами пользуются по сей день, и з используют для наименования разделов, подразделов книг, веков, так же их часто пишут на часах.

Алфавитные системы счисления

К таким системам относятся: греческая, славянская, финская и другие. Здесь числа от 1 до 9, от 10 до 90 и от 100 до 900 обозначались буквами алфавита. В Древней Греции цифры обозначались первыми девятью буквами греческого алфавита. Числа от 10 до 90 - следующими девятью. И от 100 до 900 - последними девятью буквами римского алфавита. У славян числовые значения соответствовали буквам по порядку. Сначала для этого использовалась глаголица, а потом и кириллица. В России такая нумерация сохранилась до конца XVII века. Потом Петр I привез из-за границы арабскую нумерацию, которую мы используем по сей день .

Единичная (унарная) система счисления Список систем счисления

Система счисления:

  • даёт представления множества чисел (целых и/или вещественных);
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
  • отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные , непозиционные и смешанные .

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам ; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления , возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где - это целые числа, называемые цифрами , удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда . Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Смешанные системы счисления

Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация :

, где на коэффициенты , называемые как и прежде цифрами , накладываются некоторые ограничения.

Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.

В зависимости от вида как функции от смешанные системы счисления могут быть степенными , показательными и т. п. Когда для некоторого , смешанная система счисления совпадает с показательной -ричной системой счисления.

Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд.

Факториальная система счисления

В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:

, где .

Факториальная система счисления используется при декодировании перестановок списками инверсий : имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 - (1,2,3,4,5) до перестановки с номером 119 - (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti - коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) - таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Фибоначчиева система счисления основывается на числах Фибоначчи . Каждое натуральное число в ней представляется в виде:

, где - числа Фибоначчи, , при этом в коэффициентах есть конечное количество единиц и не встречаются две единицы подряд.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

Представление, использующее биномиальные коэффициенты

, где .

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках . СОК определяется набором взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов , где

При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка .

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям .

Система счисления Штерна–Броко - способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко .

Системы счисления разных народов

Единичная система счисления

По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком - так возникают прообразы будущих цифр.

Древнеегипетская система счисления

Вавилонская система счисления

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Еврейская система счисления

Греческая система счисления

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V - 5,
X - 10,
L - 50,
C - 100,
D - 500,
M - 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как:
VI = 6

Система счисления майя

См. также

Примечания

Ссылки

  • Гашков С. Б. Системы счисления и их применение . - М .: МЦНМО , 2004. - (Библиотека «Математическое просвещение»).
  • Фомин С. В. Системы счисления . - М .: Наука, 1987. - 48 с. - (Популярные лекции по математике).
  • Яглом И. Системы счисления // Квант . - 1970. - № 6. - С. 2-10.
  • Цифры и системы счисления . Онлайн Энциклопедия Кругосвет.
  • Стахов А. Роль систем счисления в истории компьютеров .
  • Микушин А. В. Системы счисления. Курс лекций "Цифровые устройства и микропроцессоры"
  • Butler J. T., Sasao T. Redundant Multiple-Valued Number Systems В статье рассмотрены системы счисления, использующие цифры больше единицы и допускающие избыточность в представлении чисел

Wikimedia Foundation . 2010 .