Регуляция мозгового кровообращения.

МОЗГОВОЕ КРОВООБРАЩЕНИЕ - кровообращение по системе сосудов головного мозга. Кровоснабжение головного мозга более интенсивно, чем любых других органов: ок. 15% крови, поступающей в большой круг кровообращения при сердечном выбросе, протекает по кровеносным сосудам головного мозга (вес его составляет всего 2% от веса тела взрослого человека). Чрезвычайно высокий мозговой кровоток обеспечивает наибольшую интенсивность метаболических процессов в ткани мозга. Такое кровоснабжение мозга поддерживается и во время сна. Об интенсивности обмена веществ в головном мозге свидетельствует и то, что 20% кислорода, поглощаемого из окружающей среды, потребляется головным мозгом и используется на протекающие в нем окислительные процессы.

ФИЗИОЛОГИЯ

Кровеносная система головного мозга обеспечивает совершенное регулирование кровоснабжения его тканевых элементов, а также компенсацию нарушений мозгового кровотока. Головной мозг (см.) человека снабжается кровью одновременно четырьмя магистральными артериями - парными внутренними сонными и позвоночными, к-рые объединены между собой широкими анастомозами в области артериального (виллизиева) круга большого мозга (цветн. рис. 4). В нормальных условиях кровь здесь не смешивается, поступая ипсилатерально из каждой внутренней сонной артерии (см.) в полушария большого мозга, а из позвоночных - преимущественно в отделы мозга, расположенные в области задней черепной ямки.

Мозговые артерии являются сосудами не эластического, а мышечного типа с обильной адрен- и холинергической иннервацией, поэтому, меняя свой просвет в широких пределах, они могут участвовать в регулировании кровоснабжения мозга.

Парные передние, средние и задние мозговые артерии, отходящие от артериального круга, ветвясь и анастомозируя между собой, образуют сложную систему артерий мягкой мозговой оболочки (пиальных артерий), обладающую рядом особенностей: ветвления этих артерий (вплоть до мельчайших, диам. 50 мкм и менее) располагаются на поверхности мозга и регулируют кровоснабжение чрезвычайно малых областей; каждая артерия лежит в сравнительно широком канале подпаутинного пространства (см. Мозговые оболочки), и потому ее диаметр может меняться в широких пределах; артерии мягкой мозговой оболочки лежат поверх анастомозирующих вен. От мельчайших артерий мягкой мозговой оболочки отходят радиальные артерии, ветвящиеся в толще мозга; они не имеют вокруг стенок свободного пространства и, согласно экспериментальным данным, наименее активны с точки зрения изменения диаметра при регулировании М. к. Межартериальные анастомозы в толще мозга отсутствуют.

Капиллярная сеть в толще мозга непрерывная. Ее густота тем больше, чем интенсивнее обмен веществ в тканях, поэтому в сером веществе она значительно гуще, чем в белом. В каждой части мозга капиллярная сеть характеризуется специфической архитектоникой.

Венозная кровь поступает из капилляров мозга в широко анастомозирующую венозную систему как мягкой мозговой оболочки (пиальные вены), так и в большую мозговую вену (вену Галена). В отличие от других частей тела венозная система мозга не выполняет емкостной функции.

Более подробно анатомию и гистологию кровеносных сосудов головного мозга - см. Головной мозг .

Регулирование мозгового кровообращения осуществляется совершенной физиологической системой. Эффекторами регулирования являются магистральные, внутримозговые артерии и артерии мягкой мозговой оболочки, к-рые характеризуются специфическими функ. особенностями.

Четыре вида регуляции М. к. изображены на схеме.

При изменении уровня общего АД в определенных пределах интенсивность мозгового кровотока остается постоянной. Регуляция постоянного кровотока в мозге при колебаниях общего АД осуществляется благодаря изменению сопротивления в артериях мозга (цереброваскулярного сопротивления), к-рые сужаются при повышении общего АД и расширяются при его понижении. Первоначально предполагали, что сосудистые сдвиги обусловлены реакциями гладких мышц артерий на разную степень растяжения их стенок внутрисосудистым давлением. Этот вид регулирования получил название ауторегуляции или саморегуляции. Уровень повышенного или пониженного АД, при к-ром мозговой кровоток перестает быть постоянным, называют соответственно верхней или нижней границей ауторегуляции мозгового кровотока. Экспериментальные и клин, работы показали, что ауторегуляция мозгового кровотока находится в тесной взаимосвязи с неврогенными влияниями, к-рые могут смещать верхнюю и нижнюю границы его ауторегуляции. Эффекторами этого вида регуляции в артериальной системе мозга являются магистральные артерии и артерии мягкой мозговой оболочки, активные реакции к-рых поддерживают постоянный кровоток в мозге при изменении общего АД.

Регуляция М. к. при изменении газового состава крови заключается в том, что мозговой кровоток усиливается при увеличении содержания CO 2 и при уменьшении содержания O 2 в артериальной крови и уменьшается при их обратном соотношении. Влияние газов крови на тонус артерий мозга, по мнению ряда авторов, может осуществляться гуморальным путем: при гиперкапнии (см.) и гипоксии (см.) в ткани мозга возрастает концентрация H + , изменяется соотношение между HCO 3 - и CO 2 , что вместе с другими биохим, сдвигами во внеклеточной жидкости непосредственно влияет на метаболизм гладких мышц, вызывая дилатации) артерий. Важную роль в действии этих газов на сосуды мозга играет и нейрогенный механизм, в к-ром участвуют хеморецепторы каротидного синуса и, по-видимому, других мозговых сосудов.

Устранение избыточного объема крови в сосудах мозга необходимо, т. к. мозг расположен в герметически закрытом черепе и его излишнее кровенаполнение ведет к повышению внутричерепного давления (см.) и к сдавлению мозга. Избыточный объем крови может возникать при затруднении оттока крови из вен мозга и при избыточном притоке крови вследствие расширения артерий мягкой мозговой оболочки, напр, при асфиксии (см.) и при постишемической гиперемии (см. Гиперемия). Имеются данные, что эффекторами регулирования при этом являются магистральные артерии мозга, к-рые суживаются рефлекторно вследствие раздражения барорецепторов мозговых вен или артерий мягкой мозговой оболочки и ограничивают приток крови в мозг.

Регуляция адекватного кровоснабжения ткани мозга обеспечивает соответствие между интенсивностью кровотока в системе микроциркуляции (см.) и интенсивностью обмена веществ в ткани мозга. Эта регуляция имеет место при изменении интенсивности обмена веществ в ткани мозга, напр, резком усилении его активности, и при первичном изменении притока крови в ткань мозга. Регуляция осуществляется местно, причем ее эффектором являются мелкие артерии мягкой мозговой оболочки, к-рые осуществляют контроль за кровотоком в ничтожно малых участках мозга; роль при этом более мелких артерий и артериол в толще мозга не установлена. Уп-равление просветом артерий-эффекторов при регулировании мозгового кровотока, по мнению большинства авторов, осуществляется гуморальным путем, т. е. при непосредственном действии метаболических факторов, накапливающихся в ткани мозга (ионов водорода, калия, аденозина). Нек-рые экспериментальные данные свидетельствуют о нейрогенном механизме (местном) вазодилатации в мозге.

Виды регуляции мозгового кровообращения. Регуляция мозгового кровотока при изменении уровня общего артериального давления (III) и при избыточном кровенаполнении сосудов головного мозга (IV) осуществляется магистральными артериями мозга., При изменении содержания кислорода и углекислого газа в крови (II) и при нарушении адекватности кровоснабжения ткани мозга (I) в регуляцию включаются мелкие артерии мягкой мозговой оболочки.

МЕТОДЫ ИССЛЕДОВАНИЯ МОЗГОВОГО КРОВОТОКА

Метод Кети - Шмидта позволяет определить кровоток в целом мозге человека посредством измерения скорости сатурации (насыщения) ткани мозга инертным газом (обычно после вдыхания небольших количеств закиси азота). Насыщение ткани мозга устанавливают путем определения концентрации газа в пробах венозной крови, взятой из луковицы яремной вены. Этот метод (количественный) позволяет определить усредненный кровоток целого мозга лишь дискретно. Было установлено, что интенсивность мозгового кровотока у здорового человека равна примерно 50 мл крови на 100 г ткани мозга в 1 мин.

В клинике используют прямой метод, позволяющий получать количественные данные о мозговом кровотоке в небольших областях мозга с помощью клиренса (скорость очищения) радиоактивного ксенона (133 Xe) или газообразного водорода. Принцип метода заключается в том, что ткань мозга насыщается легко диффундирующими газами (р-р 133 Xe обычно вводят во внутреннюю сонную артерию, а водород вдыхают). С помощью соответствующих детекторов (для 133Xe их устанавливают над поверхностью интактного черепа, для водорода платиновые или золотые электроды вводят в любые области мозга) определяют скорость очищения ткани мозга от газа, к-рая пропорциональна интенсивности кровотока.

К прямым (но не количественным) методам относится метод определения изменений объема крови в поверхностно расположенных сосудах головного мозга с помощью радионуклидов, к-рыми метят белки плазмы крови; при этом радионуклиды не диффундируют через стенки капилляров в ткань. Особое распространение получили меченные радиоактивным йодом альбумины крови.

Причиной снижения интенсивности мозгового кровотока является уменьшение артериовенозной разности давлений вследствие понижения общего АД или повышения общего венозного давления (см.), при этом главную роль играет артериальная гипотензия (см. Гипотензия артериальная). Общее АД может резко понижаться, а общее венозное давление повышается реже и менее значительно. Уменьшение интенсивности мозгового кровотока может быть обусловлено также увеличением сопротивления в сосудах головного мозга, что может зависеть от таких причин, как атеросклероз (см.), тромбоз (см.) или ангиоспазм (см.) тех или иных артерий головного мозга. Снижение интенсивности мозгового кровотока может зависеть от внутрисосудистой агрегации форменных элементов крови (см. Агрегация эритроцитов). Артериальная гипотензия, ослабляя кровоток во всем мозге, вызывает наибольшее снижение его интенсивности в так наз. зонах смежного кровоснабжения, где внутрисосудистое давление падает сильнее всего. При сужении или окклюзии отдельных артерий мозга выраженные изменения кровотока наблюдаются в центре бассейнов соответствующих артерий. Большое значение имеют при этом вторичные патол, изменения в сосудистой системе мозга, напр, изменение реактивности мозговых артерий при ишемии (констрикторные реакции в ответ на вазодилататорные воздействия), невосстановленный кровоток.в ткани мозга после ишемии или спазм артерий в области экстравазации крови, в частности субарахноидальных кровоизлияний. Повышение венозного давления в мозге, играющее менее значительную роль в ослаблении интенсивности мозгового кровотока, может иметь самостоятельное значение, когда оно обусловлено, помимо увеличения общего венозного давления, местными причинами, приводящими к затруднению оттока венозной крови из черепа (тромбозом или опухолью). При этом возникают явления венозного застоя крови в головном мозге, к-рые приводят к увеличению кровенаполнения мозга, способствующему повышению внутричерепного давления (см. Гипертензивный синдром) и развитию отека мозга (см. Отек и набухание головного мозга).

Патол, усиление интенсивности мозгового кровотока может зависеть от повышения общего АД (см. Гипертензия артериальная) и может быть обусловлено первичной дилатацией (патол, вазодилатацией) артерий; тогда оно происходит лишь в тех областях мозга, где артерии расширены. Патол, увеличение интенсивности мозгового кровотока может привести к повышению внутрисосудистого давления. Если стенки сосудов патологически изменены (см. Артериосклероз) или же имеются артериальные аневризмы, то внезапное и резкое повышение общего АД (см. Кризы) может привести к кровоизлиянию. Патол, усиление интенсивности мозгового кровотока может сопровождаться регуляторной реакцией артерий - их констрикцией, причем при резком повышении общего АД она бывает весьма значительной. Если же функциональное состояние гладких мышц артерий при этом изменено таким образом, что процесс сокращения усилен, а процесс расслабления, наоборот, понижен, то в ответ на повышение общего АД наступает вазоконстрикция патол, типа, т. е. ангиоспазм (см.). Эти явления наиболее выражены при кратковременном повышении общего АД. При нарушениях гемато-энцефалического барьера, при склонности к отеку мозга повышение давления в капиллярах вызывает резкое усиление фильтрации воды из крови в ткань мозга, где она задерживается, в результате чего развивается отек головного мозга. Увеличение интенсивности мозгового кровотока особенно опасно при действии дополнительных факторов (черепно-мозговая травма, тяжелая гипоксия), способствующих развитию отека.

Компенсаторные механизмы - обязательная составная часть симптомокомплекса, к-рый характеризует каждое нарушение М. к. При этом компенсация осуществляется теми же регуляторными механизмами, к-рые функционируют и в нормальных условиях, но они более напряжены.

При повышении или понижении общего АД компенсация осуществляется посредством изменения сопротивления в сосудистой системе мозга, причем главную роль играют крупные мозговые артерии (внутренние сонные и позвоночные артерии). Если они не обеспечивают компенсации, то микроциркуляция перестает быть адекватной и в регуляцию вовлекаются артерии мягкой мозговой оболочки. При быстром повышении общего АД указанные механизмы компенсации могут срабатывать не сразу, и тогда интенсивность мозгового кровотока резко усиливается со всеми возможными последствиями. В нек-рых случаях компенсаторные механизмы могут работать весьма совершенно и даже при хрон, гипертензии, когда общее АД резко повышено (280-300 мм рт. ст.) значительное время; интенсивность мозгового кровотока остается нормальной и неврол, нарушения не возникают.

При понижении общего АД компенсаторные механизмы также могут поддерживать нормальную интенсивность мозгового кровотока, причем в зависимости от степени совершенства их работы пределы компенсации могут быть неодинаковы у разных лиц. При совершенной компенсации нормальная интенсивность мозгового кровотока отмечается при понижении общего АД даже до 30 мм рт. ст., тогда как обычно нижней границей ауторегуляции мозгового кровотока считают АД не ниже 55-60 мм рт. ст.

При увеличении сопротивления в тех или иных артериях головного мозга (при эмболии, тромбозе, ангиоспазме) компенсация осуществляется за счет коллатерального притока крови. Компенсацию в этом случае обеспечивают следующие факторы:

1. Наличие артериальных сосудов, по которым может осуществляться коллатеральный приток крови. Артериальная система мозга содержит большое количество коллатеральных путей в виде широких анастомозов артериального круга, а также многочисленных межартериальных макро- и микроанастомозов в системе артерий мягкой мозговой оболочки. Однако строение артериальной системы индивидуально, нередки аномалии развития, особенно в области артериального (виллизиева) круга. Расположенные в толще ткани мозга мелкие артерии не имеют анастомозов артериального типа, и хотя капиллярная сеть во всем мозге непрерывная, она не может обеспечить коллатеральный приток крови в соседние участки ткани, если приток крови в них со стороны артерий нарушен.

2. Увеличение перепада давления в коллатеральных артериальных путях при возникновении препятствий для кровотока в той или иной мозговой артерии (гемодинамический фактор).

3. Активное расширение коллатеральных артерий и мелких артериальных ветвей к периферии от места закрытия просвета артерии. Эта вазодилатация представляет собой, по-видимому, проявление регулирования адекватного кровоснабжения ткани мозга: как только возникает дефицит притока крови в ткань, начинает работать физиологический механизм, обусловливающий дилатации) тех артериальных ветвей, к-рые являются приводящими для данной микроциркуляторной системы. Вследствие этого сопротивление для кровотока в коллатеральных путях уменьшается, что способствует притоку крови в область с пониженным кровоснабжением.

Эффективность коллатерального притока крови в область пониженного кровоснабжения у разных лиц неодинакова. Механизмы, обеспечивающие коллатеральный приток крови, в зависимости от конкретных условий могут нарушаться (так же, как и другие механизмы регулирования и компенсации). Так, способность коллатеральных артерий к расширению при склеротических процессах в их стенках падает, что препятствует коллатеральному притоку крови в область нарушенного кровоснабжения.

Для механизмов компенсации характерна двойственность, т. е. компенсация одних нарушений вызывает другие циркуляторные расстройства. Напр., при восстановлении в ткани мозга, испытавшей дефицит кровоснабжения, кровотока в ней возможно возникновение постишемической гиперемии, при к-рой интенсивность микроциркуляции может быть значительно выше уровня, необходимого для обеспечения метаболических процессов в ткани, т. е. наступает избыточная перфузия крови, способствующая, в частности, развитию постишемического отека головного мозга.

На адекватные и фармакол, воздействия может наблюдаться извращенная реактивность артерий мозга. Так, в основе синдрома «внутримозгового обкрадывания» лежит нормальная вазодилататорная реакция здоровых сосудов, окружающих очаг ишемии ткани мозга, и отсутствие таковой у пораженных артерий в очаге ишемии, в результате чего кровь перераспределяется из очага ишемии в здоровые сосуды, а ишемия усугубляется.

ПАТОЛОГИЧЕСКАЯ АНАТОМИЯ РАССТРОЙСТВ МОЗГОВОГО КРОВООБРАЩЕНИЯ

Морфол. признаки нарушения М. к. выявляются в виде очаговых и диффузных изменений, тяжесть и локализация к-рых различны и в значительной степени зависят от основного заболевания и непосредственных механизмов развития расстройства кровообращения. Различают три основные формы нарушения

М. к.: кровоизлияния (геморрагический инсульт), инфаркты мозга (ишемический инсульт) и множественные различного характера мелкоочаговые изменения вещества мозга (сосудистая энцефалопатия).

Клин, проявления окклюзирующего поражения экстракраниального отдела внутренней сонной артерии в начальном периоде протекают чаще в виде преходящих нарушений М. к. Неврол, симптоматика разнообразна. Примерно в 1/3 случаев имеет место альтернирующий оптико-пирамидный синдром - слепота или снижение зрения, иногда с атрофией зрительного нерва на стороне пораженной артерии (вследствие дисциркуляции в глазничной артерии), и пирамидные нарушения на противоположной поражению стороне. Иногда эти симптомы возникают одновременно, иногда диссоциированно. Наиболее частыми при окклюзии внутренней сонной артерии являются признаки дисциркуляции в бассейне средней мозговой артерии: парезы конечностей противоположной поражению стороны, обычно кортикального типа с более выраженным дефектом руки. При инфарктах в бассейне левой внутренней сонной артерии часто развивается афазия, обычно моторная. Могут встречаться нарушения чувствительности и гемианопсия. Изредка отмечаются эпилептиформные припадки.

При инфарктах, обусловленных интракраниальным тромбозом внутренней сонной артерии, протекающим с разобщением артериального круга, наряду с гемиплегией и гемигипестезией наблюдаются резко выраженные общемозговые симптомы: головная боль, рвота, нарушение сознания, психомоторное возбуждение; появляется вторичный стволовой синдром.

Синдром окклюзирующего поражения внутренней сонной артерии, помимо интермиттирующей) течения заболевания и указанных неврол, проявлений, характеризуется ослаблением или исчезновением пульсации пораженной сонной артерии, нередко наличием сосудистого шума над ней и снижением ретинального давления на той же стороне. Сдавление непораженной сонной артерии вызывает головокружение, иногда обморок, судороги в здоровых конечностях.

Для окклюзирующего поражения экстракраниального отдела позвоночной артерии характерна «пятнистость» поражения различных отделов бассейна позвоночнобазилярной системы: часто имеют место вестибулярные нарушения (головокружение, нистагм), расстройства статики и координации движений, зрительные и глазодвигательные нарушения, дизартрия; реже определяются двигательные и чувствительные нарушения. У нек-рых больных отмечаются приступы внезапного падения в связи с утратой постурального тонуса, адинамия, гиперсомния. Довольно часто наблюдаются расстройства памяти на текущие события типа корсаковского синдрома (см.).

При закупорке интракраниального отдела позвоночной артерии стойкие альтернирующие синдромы поражения продолговатого мозга сочетаются с преходящими симптомами ишемии оральных отделов мозгового ствола, затылочных и височных долей. Примерно в 75% случаев развиваются синдромы Валленберга - Захарченко, Бабинского-Нажотта и другие синдромы одностороннего поражения нижних отделов мозгового ствола. При двустороннем тромбозе позвоночной артерии возникает тяжелое расстройство глотания, фонации, нарушается дыхание и сердечная деятельность.

Острая закупорка базилярной артерии сопровождается симптомами преимущественного поражения моста с расстройством сознания вплоть до комы, быстрым развитием поражений черепных нервов (III, IV, V, VI, VII пар), псевдобульбарного синдрома, параличей конечностей с наличием двусторонних патол. рефлексов. Наблюдаются вегетативно-висцеральные кризы, гипертермия, расстройство витальных функций.

Диагностика нарушений мозгового кровообращения

Основанием для диагноза начального проявления неполноценности М. к. является: наличие двух или более субъективных признаков, часто повторяющихся; отсутствие при обычном неврол, осмотре симптомов органического поражения ц. н. с. и обнаружение признаков общего сосудистого заболевания (атеросклероза, гипертонической болезни, васкулита, сосудистой дистонии и др.), что особенно важно, т. к. субъективные жалобы больного не являются Патогномоничными для начальных проявлений сосудистой неполноценности мозга и могут отмечаться и при других состояниях (неврастении, астенических синдромах различного генеза). В целях установления у больного общего сосудистого заболевания необходимо проведение разностороннего клин, обследования.

Основанием для диагноза острого нарушения М. к. служит внезапное появление симптомов органического поражения головного мозга на фоне общего сосудистого заболевания со значительной динамикой общемозговых и локальных симптомов. При исчезновении этих симптомов в срок менее 24 час. диагностируется преходящее нарушение М. к., при наличии более стойкой симптоматики - мозговой инсульт. Ведущее значение при определении характера инсульта имеют не отдельные признаки, а их совокупность. Патогномоничных признаков для того или иного вида инсульта не существует. Для диагностики геморрагического инсульта имеют значение высокое АД и церебральные гипертонические кризы в анамнезе, внезапное начало заболевания, быстрое прогрессирующее ухудшение состояния, значительная выраженность не только очаговых, но и общемозговых симптомов, отчетливые вегетативные нарушения, раннее появление симптомов, обусловленных смещением и сдавлением мозгового ствола, быстро наступающие изменения со стороны крови (лейкоцитоз, нейтрофилез со сдвигом влево в лейкоцитарной формуле, повышение индекса Кребса до 6 и выше), наличие крови в цереброспинальной жидкости.

Об инфаркте мозга свидетельствует развитие инсульта во сне или на фоне ослабления сердечно-сосудистой деятельности, отсутствие артериальной гипертензии, наличие кардиосклероза, инфаркта миокарда в анамнезе, относительная устойчивость витальных функций, сохранность сознания при массивной неврол, симптоматике, отсутствие или слабая выраженность вторичного стволового синдрома, относительно медленное развитие заболевания, отсутствие изменений со стороны крови в первые сутки после инсульта.

Помогают в диагностике данные эхоэнцефалографии (см.) - смещение М-эха в сторону контралатерального полушария скорее говорит в пользу интрацеребрального кровоизлияния. Рентгенол, исследование сосудов головного мозга после введения контрастных веществ (см. Вертебральная ангиография , Каротидная ангиография) при внутриполушарных гематомах выявляет бессосудистую зону и смещение артериальных стволов; при инфаркте мозга часто выявляется окклюзирующий процесс в магистральных или внутримозговых сосудах, дислокация артериальных стволов нехарактерна. Ценную информацию при диагностике инсульта дает компьютерная томография головы (см. Томография компьютерная).

Основные принципы терапии нарушения мозгового кровообращения

При начальных проявлениях неполноценности М. к. терапия должна быть направлена на лечение основного сосудистого заболевания, нормализацию режима труда и отдыха, на применение средств, улучшающих метаболизм ткани мозга и гемодинамику.

При острых нарушениях М. к. требуются срочные мероприятия, т. к. не всегда ясно, окажется ли нарушение М. к. преходящим или стойким, поэтому в любом случае необходим полный психический и физический покой. Следует купировать мозговой сосудистый приступ на самых ранних стадиях его развития. Лечение преходящих нарушений М. к. (сосудистых церебральных кризов) должно предусматривать в первую очередь нормализацию АД, сердечной деятельности и мозговой гемодинамики с включением при необходимости антигипоксических, противоотечных и различных симптоматических средств, в т. ч. седативных, в нек-рых случаях применяют антикоагулянты и антиагреганты. Лечение при кровоизлиянии в мозг направлено на остановку кровотечения и предупреждение его возобновления, на борьбу с отеком мозга и нарушением витальных функций. При лечении инфаркта

мозга проводят мероприятия, направленные на улучшение кровоснабжения мозга: нормализацию сердечной деятельности и АД, увеличение притока крови к мозгу путем расширения регионарных мозговых сосудов, уменьшение спазма сосудов и улучшение микроциркуляции, а также нормализацию физ.-хим. свойств крови, в частности на восстановление равновесия в свертывающей системе крови для предупреждения тромбоэмболий и в целях растворения уже образовавшихся тромбов.

Библиография: Акимов Г. А. Преходящие нарушения мозгового кровообращения, Л., 1974, библиогр.; Антонов И. П. и Гиткина Л. С. Вертебрально-базилярные инсульты, Минск, 1977; Б e к о в Д. Б. и Михайлов С. С. Атлас артерий и вен головного мозга человека, М., 1979, библиогр.; Боголепов Н. К. Коматозные состояния, с. 92, М., 1962; о н ж е, Церебральные кризы и инсульт, М., 1971; Ганнушкина И. В. Коллатеральное кровообращение в мозге, М., 1973; К досовский Б. Н. Циркуляция крови в мозгу, М., 1951, библиогр.; К о л т о-верА. Н.идр. Патологическая анатомия нарушений мозгового кровообращения, М., 1975; Минц А. Я. Атеросклероз мозговых сосудов, Киев, 1970; Москаленко Ю.Е. и др. Внутричерепная гемодинамика, Биофизические аспекты, Л., 1975; Мчедлишвили Г. И. Функция сосудистых механизмов головного мозга, Л., 1968; о н же, Спазм артерий головного мозга, Тбилиси, 1977; Сосудистые заболевания нервной системы, под ред. Е. В. Шмидта, с. 632, М., 1975; Ш м и д т Е. В. Стеноз и тромбоз сонных артерий и нарушения мозгового кровообращения, М., 1963; Шмидт Е. В., Лунев Д. К. и Верещагин Н. В. Сосудистые заболевания головного и спинного мозга, М., 1976; Cerebral circulation and stroke, ed. by K. J. Ztilch, B. u. a., 1971; Fisher С. М. The arterial lesions underlying lacunes, Acta neuropath. (Berl.), v. 12, p. 1, 1969; Handbook of clinical neurology, ed. by P. J. Vinken a. G. W. Bruyn, v. 11 -12, Amsterdam, 1975; Jorgensen L. a. Torvik A. Ischemic cerebrovascular diseases in an autopsy series, J. Neurol. Sci., v. 9, p. 285, 1969; Olesen J. Cerebral blood flow, Copenhagen, 1974; P u r v e s M. J. The physiology of the cerebral circulation, Cambridge, 1972.

Д. К. Лунев; A. H. Колтовер, P. П. Чайковская (пат. ан.), Г. И. Мчедлишвили (физ., пат. физ.).

Регуляция мозгового кровообращения осуществляется сложной системой, включающей интра- и экстрацеребральные механизмы. Эта система способна к саморегуляции (т.е. может поддерживать кровоснабжение головного мозга в соответствии с его функциональной и метаболической потребностью и тем самым сохранять постоянство внутренней среды), что осуществляется путем изменения просвета мозговых артерий. Эти гомеостатические механизмы, развившиеся в процессе эволюции, весьма совершенны и надежны. Среди них выделяют следующие основные механизмы саморегуляции.

Нервный механизм передает информацию о состоянии объекта регулирования посредством специализированных рецепторов, расположенных в стенках сосудов и в тканях. К ним, в частности, относятся механорецепторы, локализующиеся в кровеносной системе, сообщающие об изменениях внутрисосудистого давления (баро- и прессорецепторы), в том числе прессорецепторы каротидного синуса, при их раздражении расширяются мозговые сосуды; механорецепторы вен и мозговых оболочек, которые сигнализируют о степени их растяжения при увеличении кровенаполнения или объема мозга; хеморецепторы каротидного синуса (при их раздражении суживаются мозговые сосуды) и самой ткани мозга, откуда идет информация о содержании кислорода, углекислоты, о колебаниях рН и о других химических сдвигах в среде при накоплении продуктов метаболизма или биологически активных веществ, а также рецепторы вестибулярного аппарата, аортальной рефлексогенной зоны, рефлексогенные зоны сердца и коронарных сосудов, ряд проприорецепторов. Особенно велика роль синокаротидной зоны. Она оказывает влияние на мозговое кровообращение не только опосредовано (через общее АД), как это представлялось ранее, но и непосредственно. Денервация и новокаинизация этой зоны в эксперименте, устраняя сосудосуживающие влияния, ведет к расширению мозговых сосудов, к усилению кровоснабжения головного мозга, к повышению в нем напряжения кислорода.

Гуморальный механизм заключается в прямом воздействии на стенки сосудов-эффекторов гуморальных факторов (кислорода, углекислоты, кислых продуктов метаболизма, ионов К и др.) путем диффузии физиологически активных веществ в стенку сосудов. Так, мозговое кровообращение усиливается при уменьшении содержания кислорода и (или) увеличении содержания углекислого газа в крови и, наоборот, ослабляется, когда содержание газов в крови меняется в противоположном направлении. При этом происходит рефлекторная дилятация или констрикция сосудов в результате раздражения хеморецепторов соответствующих артерий мозга при изменении содержания в крови кислорода и углекислоты. Возможен и механизм аксонрефлекса.


Миогенный механизм реализуется на уровне сосудов-эффекторов. При их растяжении тонус гладких мышц возрастает, а при сокращении наоборот снижается. Миогенные реакции могут способствовать изменениям сосудистого тонуса в определенном направлении.

Разные механизмы регуляции действуют не изолировано, а в различных сочетаниях друг с другом. Система регулирования поддерживает постоянный кровоток в мозге на достаточном уровне и быстро изменяет его при воздействии различных «возмущающих» факторов.

Таким образом, понятие «сосудистые механизмы» включает структурные и функциональные особенности соответствующих артерий или их сегментов (локализацию в микроциркуляторной системе, калибр, строение стенок, реакции на различные воздействия), а также их функциональное поведение – специфическое участие в тех либо иных видах регуляции периферического кровообращения и микроциркуляции.

Выяснение структурно-функциональной организации сосудистой системы головного мозга позволило сформулировать концепцию о внутренних (автономных) механизмах регуляции мозгового кровообращения при различных возмущающих воздействиях. Согласно этой концепции, в частности, были выделены: «замыкательный механизм» магистральных артерий, механизм пиальных артерий, механизм регуляции оттока крови из венозных синусов мозга, механизм внутримозговых артерий. Суть их функционирования заключается в следующем.

«Замыкательный» механизм магистральных артерий поддерживает в мозге постоянство кровотока при изменениях уровня общего артериального давления. Это осуществляется путем активных изменений просвета мозговых сосудов – их сужения, увеличивающего сопротивление кровотоку при повышении общего АД и, наоборот, расширения, снижающего цереброваскулярное сопротивление при падении общего АД. Как констрикторные, так и дилятаторные реакции возникают рефлекторно с экстракраниальных прессорецепторов, либо с рецепторов самого мозга. Основными эффекторами в таких случаях являются внутренние сонные и позвоночные артерии. Благодаря активным изменениям тонуса магистральных артерий гасятся дыхательные колебания общего артериального давления, а также волны Траубе – Геринга, и тогда кровоток в сосудах мозга остается равномерным. Если же изменения общего АД очень значительны или механизм магистральных артерий несовершенен, вследствие чего нарушается адекватное кровоснабжение головного мозга, то наступает второй этап саморегуляции – включается механизм пиальных артерий, реагирующий аналогично механизму магистральных артерий. Весь этот процесс многозвеньевой. Основную роль в нем играет нейрогенный механизм, однако определенное значение имеют и особенности функционирования гладкомышечной оболочки артерии (миогенный механизм), а также чувствительность последней к различным биологически активным веществам (гуморальный механизм).

При венозном застое, обусловленном окклюзией крупных шейных вен, избыточное кровенаполнение сосудов головного мозга устраняется путем ослабления притока крови в его сосудистую систему вследствие констрикции всей системы магистральных артерий. В таких случаях регуляция происходит также рефлекторно. Рефлексы посылаются с механорецепторов венозной системы, мелких артерий и оболочек мозга (вено-вазальный рефлекс).

Система внутримозговых артерий представляет собой рефлексогенную зону, которая в условиях патологии дублирует роль синокаротидной рефлексогенной зоны.

Таким образом, согласно разработанной концепции, существуют механизмы, ограничивающие влияние общего АД на мозговой кровоток, корреляция между которыми во многом зависит от вмешательства саморегулирующихся механизмов, поддерживающих постоянство сопротивления мозговых сосудов (табл. 1). Однако саморегуляция возможна лишь в определенных пределах, ограниченных критическими величинами факторов, являющихся ее пусковыми механизмами (уровень системного АД, напряжения кислорода, углекислоты, а также рH вещества мозга и др.). В клинических условиях важно определить роль исходного уровня АД, его диапазона, в рамках которого мозговой кровоток сохраняет стабильность. Отношение диапазона этих изменений к исходному уровню давления (показатель саморегуляции мозгового кровотока) в известной мере определяет потенциальные возможности саморегуляции (высокий или низкий уровень саморгеуляции).

Нарушения саморегуляции мозгового кровообращения возникают в следующих случаях.

1. При резком снижении общего АД, когда градиент давления в кровеносной системе мозга уменьшается настолько, что не может обеспечить достаточный кровоток в мозге (при уровне систолического давления ниже 80 мм рт. ст.). Минимальный критический уровень системного АД равен 60 мм рт. ст. (при исходном – 120 мм рт. ст.). При его падении мозговой кровоток пассивно следует за изменением общего АД.

2. При остром значительном подъеме системного давления (выше 180 мм рт. ст.), когда нарушается миогенная регуляция, так как мышечный аппарат артерий мозга утрачивает способность противостоять повышению внутрисосудистого давления, в результате чего расширяются артерии, усиливается мозговой кровоток, что чревато «мобилизацией» тромбов и эмболией. Впоследствии изменяются стенки сосудов, а это ведет к отеку мозга и резкому ослаблению мозгового кровотока, несмотря на то, что системное давление продолжает оставаться на высоком уровне.

3. При недостаточном метаболическом контроле мозгового кровотока. Так, иногда после восстановления кровотока в ишемизированном участке мозга концентрация углекислоты снижается, но рН сохраняется на низком уровне вследствие метаболического ацидоза. В результате сосуды остаются расширенными, а мозговой кровоток – высоким; кислород утилизируется не в полной мере и оттекающая венозная кровь имеет красный цвет (синдром избыточной перфузии).

4. При значительном снижении интенсивности насыщения крови кислородом или увеличении напряжения углекислоты в мозге. При этом активность мозгового кровотока также меняется вслед за изменением системного АД.

При срывах механизмов саморегуляции артерии мозга утрачивают способность к сужению в ответ на повышение внутрисосудистого давления, пассивно расширяются, вследствие чего избыточное количество крови под высоким давлением направляется в мелкие артерии, капилляры, вены. В результате повышается проницаемость стенок сосудов, начинается выход белков, развивается гипоксия, возникает отек мозга.

Таким образом, нарушения мозгового кровообращения компенсируются до определенных пределов за счет местных регуляторных механизмов. Впоследствии в процесс вовлекается и общая гемодинамика. Однако даже при терминальных состояниях в течение нескольких минут за счет автономности мозгового кровообращения в мозге поддерживается кровоток, а напряжение кислорода падает медленнее, чем в других органах, так как нервные клетки способны поглощать кислород при таком низком парциальном давлении его в крови, при котором другие органы и ткани поглощать его не могут. По мере развития и углубления процесса все более нарушаются взаимоотношения между мозговым кровотоком и системной циркуляцией, иссякает резерв ауторегулирующих механизмов, и кровоток в мозге все больше начинает зависеть от уровня общего АД.

Таким образом, компенсация нарушений мозгового кровообращения осуществляется при помощи тех же, функционирующих в нормальных условиях, регуляторных механизмов, но более напряженных.

Для механизмов компенсации характерна двойственность: компенсация одних нарушений вызывает другие циркуляторные расстройства, например, при восстановлении кровотока в ткани, испытавшей дефицит кровоснабжения, в ней может развиться постишемическая гиперемия в виде избыточной перфузии, способствующей развитию постишемического отека мозга.

Конечной функциональной задачей системы мозгового кровообращения являются адекватное метаболическое обеспечение деятельности клеточных элементов мозга и своевременное удаление продуктов их обмена, т.е. процессы, протекающие в пространстве микрососуд – клетка. Все реакции мозговых сосудов подчинены этим главным задачам. Микроциркуляция в головном мозге имеет важную особенность: в соответствии со спецификой его функционирования активность отдельных областей ткани меняется почти независимо от других областей ее, поэтому микроциркуляция также меняется мозаично – в зависимости от характера функционирования мозга в тот или иной момент. Благодаря ауторегуляции перфузионное давление микроциркуляторных систем любых частей мозга менее зависит от центрального кровообращения в других органах. В мозге микроциркуляция усиливается при повышении уровня метаболизма и, наоборот. Те же механизмы функционируют и в условиях патологии, когда имеет место неадекватность кровоснабжения ткани. При физиологических и патологических условиях интенсивность кровотока в микроциркуляторной системе зависит от величины просвета сосудов и от реологических свойств крови. Однако регулирование микроциркуляции осуществляется в основном путем активных изменений ширины сосудов, в то же время при патологии важную роль играют также изменения текучести крови в микрососудах.

Наблюдение с низким функциональным значением приводящего сосуда АВМ иллюстрирует клинический пример №6.

Клинический пример №6. Пациентка П., 17 лет, и/б №761 – 2006. Клинический диагноз: «АВМ конвекситальных отделов левой теменной доли.

Эпилептический синдром». По классификации S&M – III типа. АВМ средних размеров (объемом до 6 см3) заполняется из гипертрофированных длинных ветвей левой СМА на уровне М3 – М4 сегментов (рисунок 37, А) с дренированием через расширенные корковые и глубокие вены в верхний сагиттальный, левые сигмовидный и каменистый синусы. По данным

предоперационной ТКДГ выявляли паттерн шунтирования в левой СМА с повышением ЛСК до 171 см/с, снижением ПИ до 0.38. В правой СМА ЛСК (65 см/с) и ПИ (0.83) находились в пределах нормы. При кросс-спектральном анализе спонтанных колебаний САД и ЛСК (рисунок 37, Д) выявлены нормальные значения фазового сдвига (1.2±0.1 рад) в бассейне правой СМА, и существенное его снижение (0.2±0.1 рад) в бассейне левой СМА, участвующем в кровоснабжении АВМ. По данным манжетного теста индекс АРМК (ARI) в правой СМА составил 5 %/с, в левой СМА – снижен до 0. Данные предоперационной оценки АРМК в бассейне приводящего сосуда указывали на выраженные её нарушения.

Пациентке выполнена операция – суперселективная эмболизация АВМ из бассейна левой СМА гистоакрилом с липоидолом (1:3) объемом до 1 мл. Микрокатетер установлен в приводящий сосуд АВМ, барбитуровый тест отрицательный. Индекс потока в приводящем сосуде – 600 мл/мин, ДК в нем – 30 мм рт.ст., что составило 32% от САД (93 мм рт. ст.). Приводящий сосуд расценен как функционально незначимый, после чего произведена эмболизация АВМ. При контрольной ангиографии АВМ не контрастируется, достигнуто тотальное выключение её из кровообращения (рисунок 38 – А).

Нарастания неврологической симптоматики в послеоперационном периоде не отмечено. По данным ТКДГ выявляли отсутствие паттерна шунта, нормализацию ЛСК в левой СМА. По данным кросс-спектрального анализа спонтанных колебаний САД и ЛСК на стороне АВМ (рисунок 38, Г) отмечали повышение фазового сдвига до 0.8±0.2 рад между колебаниями ЛСК на стороне АВМ левой теменной доли и САД в диапазоне М - волн. Кроме того, наблюдали повышение АРМК с обеих сторон до 8 (рисунок 38, В), что свидетельствует о полном её восстановлении в бассейне левой СМА после проведенной

внутрисосудистой операции. Пациентка была выписана в удовлетворительном состоянии по месту жительства (mRs – 0 баллов). При повторной ангиографии через 7 лет после операции

данных за контрастирование АВМ не получено.

А)

Б) В)

Г)

Д)

Рисунок 37. Результаты обследования больной, П., 17 лет, с АВМ левой теменной доли до эндоваскулярного вмешательства. . А – каротидная ангиография слева и ТКДГ в обеих СМА, Б – мониторинг САД и ЛСК обеих СМА; В – манжетный тест; Г – амплитуда медленных колебаний ЛСК и САД в диапазоне В-волн и М-волн; Д – фазовый сдвиг между ЛСК и САД и амплитудный спектр САД в диапазоне М-волн.

Б) В)

Г)

Д)

Рисунок 38. Результаты обследования больной, П., 17 лет, с АВМ левой теменной доли после эмболизации гистоакрилом. А – контрольная каротидная ангиография слева и ТКДГ в обеих СМА, Б – мониторинг САД и ЛСК обеих СМА; В – манжетный тест; Г – амплитуда медленных колебаний ЛСК и САД в диапазоне В-волн и М-волн; Д – фазовый сдвиг между ЛСК и САД и амплитудный спектр САД в диапазоне М-волн.

Таким образом, у пациентки с АВМ левой теменной доли, расположенной в функционально значимой зоне, в предоперационном периоде было диагностированы низкие показатели состояния АРМК в бассейне приводящего сосуда АВМ, что в совокупности с интраоперационными тестами, позволило установить его низкое функциональное значение и произвести тотальную эмболизацию АВМ без неврологических осложнений.

2.1 Ауторегуляция мозгового кровообращения

Важнейшей особенностью кровоснабжения мозга является феномен ауторегуляции - способность поддерживать своё кровоснабжение в соответствиями с метаболическими потребностями независимо от колебаний системного артериального давления. У здоровых людей МК остаётся неизменным при колебаниях АДср от 60 до 160 мм рт.ст. Если АДср выходит за границы этих значений, то ауторегуляция МК нарушается. Увеличение АДср до 160 мм рт.ст. и выше вызывает повреждение гематоэнцефалического барьера, чреватое отёком мозга и геморрагическим инсультом.

При хронической артериальной гипертонии кривая ауторегуляции мозгового кровообращения смещается вправо, причём сдвиг захватывает и нижнюю, и верхнюю границы. При артериальной гипертонии снижение АД до обычных значений (меньше изменённой нижней границы) приводит к уменьшению МК, в то время как высокое АД не вызывает повреждение мозга. Длительная гипотензивная терапия может восстановить ауторегуляцию МК в физиологических границах.

Регуляция мозгового кровообращения осуществляется посредством следующих механизмов:

1)метаболический - главный механизм, обеспечивающий соответствие мозгового кровотока энергетическим потребностям конкретной функциональной зоны и мозга в целом. Когда потребность мозга в энергетических субстратах превышает их доставку, в кровь выделяются тканевые метаболиты, которые вызывают церебральную вазодилятацию и увеличение МК. Этот механизм опосредуют ионы водорода, а также другие вещества - оксид азота (NO), аденозин, простагландин и, возможно, градиенты ионной концентрации.

2)нейрогенный и нейрогуморальный механизмы - обеспечиваются симпатическими (вазоконстрикторными), парасимпатическими (вазодилатирующими) и нехолинергическими неадренергическими волокнами; нейротрансмиттеры в последней группе - серотонин и вазоактивный интестинальный пептид. Функция вегетативных волокон сосудов мозга в физиологических условиях неизвестна, но продемонстрировано их участие при некоторых патологических состояниях. Так, импульсация по симпатическим волокнам из верхних симпатических ганглиев может значительно сузить крупные мозговые сосуды и уменьшить МК. Вегетативная иннервация мозговых сосудов играет важную роль в возникновении церебрального вазоспазма после ЧМТ и инсульта.

3)миогенный механизм реализуется посредством способности гладкомышечных клеток церебральных артериол сокращаться и расслабляться в зависимости от АДср. Этот механизм эффективен в пределах среднего АД от 60 до 160 мм рт.ст. (у нормотоников). Повышение среднего АД выше 160 мм рт.ст. ведёт к расширению сосудов мозга, нарушению гематоэнцефалического барьера (ГЭБ), отёку и ишемии головного мозга, а снижение среднего АД ниже 60 мм рт.ст. - к максимальному расширению сосудов мозга и пассивному кровотоку. Необходимо заметить, что фоновый симпатический тонус предотвращает максимальную вазодилятацию, поэтому ауторегуляция может сохраняться и при значениях АДср<60 мм рт.ст. на фоне хирургической или фармакологической симпатэктомии. Ауторегуляция не происходит мгновенно.

4)механический тип регуляции обеспечивает возрастание сосудистой резистентности (в ответ на повышение внутрисосудистого давления) увеличением тканевого давления вследствие экстракапиллярного пропотевания жидкости. Этот механизм в большой степени может объяснить феномен «ложной ауторегуляции» при отёке головного мозга и внутричерепной гипертензии.

Ауторегуляция не является мгновенным процессом, так как при быстром снижении АД мозговой кровоток восстанавливается до исходного уровня в течение от 30 с до 3-4 мин.

Вернуться к номеру

Нарушение ауторегуляции мозгового кровотока как фактор развития мозговых дисциркуляций при сахарном диабете 2-го типа

Авторы: Е.Л. Товажнянская, О.И. Дубинская, И.О. Безуглая, М.Б. Наврузов Кафедра неврологии Харьковского национального медицинского университета Научно-практический медицинский центр ХНМУ

Сосудистые заболевания головного мозга остаются одной из острейших и глобальных медико-социальных проблем, наносящих огромный экономический ущерб обществу. В Украине львиная доля (95 %) цереброваскулярных заболеваний (ЦВЗ) принадлежит хроническим нарушениям мозгового кровообращения, рост частоты встречаемости которых в основном и предопределяет увеличение распространенности ЦВЗ в нашей стране. Тенденция к постарению населения планеты и увеличение в популяции числа основных факторов риска развития сосудистых заболеваний головного мозга (артериальная гипертензия (АГ), болезни сердца, сахарный диабет (СД), гиперхолестеринемия, гиподинамия, курение и другие) обусловливают дальнейший рост ЦВЗ на ближайшие десятилетия .

Известно, что важнейшим независимым фактором риска развития всех форм ЦВЗ является сахарный диабет — одно из самых распространенных заболеваний среди людей среднего и пожилого возраста. СД поражает в среднем от 1,2 до 13,3 % населения планеты и является причиной около 4 млн смертей ежегодно во всем мире. Наиболее часто в структуре СД (90-95 %) встречается сахарный диабет 2-го типа. По оценкам Всемирной организации здравоохранения, число лиц, страдающих сахарным диабетом, в мире составляет более 190 млн, а к 2025 году эта цифра возрастет до 330 млн. В Украине на сегодняшний день зарегистрировано более 1 млн пациентов, страдающих сахарным диабетом. Однако данные эпидемиологических исследований показали, что истинное число больных в 2-2,5 раза выше .

На основании проведенных широкомасштабных исследований было установлено, что СД повышает риск развития мозгового инсульта в 2-6 раз, транзиторных ишемических атак — в 3 раза по сравнению с таковым риском в общей популяции. Кроме того, СД отводится важная роль в формировании хронической прогрессирующей недостаточности мозгового кровообращения — диабетической энцефалопатии (ДЭ) и сосудистой деменции. Риск развития сердечно-сосудистых катастроф значительно увеличивается при сочетании СД с другими факторами риска (АГ, дислипидемия, ожирение), что нередко наблюдается у данной когорты пациентов .

Патогенетическую основу развития ЦВЗ у больных с диабетом обусловливает генерализованное поражение при СД мелких сосудов (микроангиопатия), сосудов среднего и крупного калибра (макроангиопатия). В результате развивается так называемая диабетическая ангиопатия, наличие и выраженность которой определяют течение и прогноз заболевания. Установлено, что изменения в мелких сосудах (артериолах, капиллярах, венулах) носят специфический для СД характер, а в крупных — расцениваются как ранний и распространенный атеросклероз .

Патогенез микроангиопатии (в том числе vasa nervorum) при диабете связан с образованием аутоантител к гликозилированным белкам сосудистых стенок, накоплением в сосудистой стенке липопротеидов низкой плотности, активизацией процессов перекисного окисления липидов и увеличением образования свободных радикалов, подавлением синтеза простациклина и дефицитом оксида азота, обладающих антиагрегантным и сосудорасширяющим действием.

Развитие дислипидемии на фоне повышения проницаемости сосудистой стенки за счет ее структурных нарушений, связанных с гликозилированием белковых молекул, усилением процессов пероксидации, дефицитом NO и др., приводит к формированию атеросклеротических бляшек, поражающих магистральные сосуды (макроангиопатия). При этом диабетическая макроангиопатия не имеет специфических отличий от атеросклеротических изменений сосудов у людей без СД. Однако установлено, что атеросклероз при СД развивается на 10-15 лет раньше, чем у лиц без него, и затрагивает большинство артерий, что объясняется метаболическими нарушениями, предрасполагающими к сосудистым поражениям . Кроме того, более широкой распространенности атеросклеротического процесса при СД способствует и развитие микроангиопатий.

В свою очередь, прогрессирование микро- и макроангиопатий приводит к снижению эндоневрального кровотока и тканевой гипоксии. Развивающаяся при этом дисгемическая гипоксия переключает энергетический метаболизм нервной ткани на малоэффективный анаэробный гликолиз. В результате в нейронах снижается концентрация фосфокреатина, возрастает содержание лактата (продукт анаэробного окисления глюкозы), развиваются энергетический дефицит и лактоацидоз, что приводит к структурно-функциональным нарушениям в нейронах, клиническим результатом чего является развитие диабетической энцефалопатии. Диабетическая энцефалопатия — стойкая церебральная патология, возникающая под воздействием хронической гипергликемии, метаболических и сосудистых нарушений, клинически проявляется неврологическими синдромами и психопатологическими расстройствами. Установлено, что важную роль в развитии хронических нарушений мозгового кровообращения при СД играют также эндотелиальная дисфункция, нарушение ауторегуляции мозгового кровотока, повышение вязкости и агрегационных свойств крови .

Известно, что адекватное функционирование процессов ауторегуляции мозгового кровотока способно компенсировать гемодинамический дефицит, обусловленный различными причинами, за счет сочетанной работы анатомических и функциональных источников компенсации. По мнению ряда авторов, низкие показатели цереброваскулярной реактивности ассоциируются с повышенным риском развития острых и хронических нарушений мозгового кровообращения . Ауторегуляция церебрального кровообращения обеспечивается комплексом миогенных, метаболических и нейрогенных механизмов. Миогенный механизм связан с реакцией мышечного слоя сосудов на уровень внутрисосудистого давле- ния — так называемый эффект Остроумова — Бейлиса. При этом церебральный кровоток поддерживается на постоянном уровне при условии колебания среднего артериального давления (АД) в диапазоне от 60-70 до 170- 180 мм рт.ст. за счет способности сосудов реагировать: на повышение системного АД — спазмом, на снижение — дилатацией. При снижении АД менее 60 мм рт.ст. или подъеме выше 180 мм рт.ст. появляется зависимость «АД — мозговой кровоток», за которой следует «срыв» ауторегуляции церебрального кровообращения. Метаболический механизм ауторегуляции опо- средован тесной связью кровоснабжения головного мозга с его метаболизмом и функцией. Метаболическими факторами, обусловливающими интенсивность кровоснабжения мозга, являются уровни РаСО2, РаО2 и продуктов метаболизма в артериальной крови и ткани мозга. Снижение нейронального метаболизма приводит к снижению уровня мозгового кровотока. Таким образом, ауторегуляция мозгового кровотока — легкоуязвимый процесс, который может нарушаться при резком повышении или снижении АД, гипоксии, гиперкапнии, прямом токсическом действии экзо- и эндотоксинов на мозговую ткань, в том числе хронической гипергликемии и каскада патологических процессов, которые она инициирует. В этом случае срыв ауторегуляции является составной частью патологического процесса при СД, на основе которого формируются хронические нарушения церебральной гемодинамики и диабетическая энцефалопатия. А оценка состояния цереброваскулярного резерва имеет важное прогностически-диагностическое значение для форм ЦВЗ диабетического генеза .

Целью настоящего исследования явилось определение роли нарушения вазомоторной реактивности сосудов мозга в формировании диабетической энцефалопатии и разработка путей ее коррекции.

Материалы и методы

Было обследовано 67 больных с СД 2-го типа в стадии субкомпенсации и диабетической энцефалопатией в возрасте от 48 до 61 года и длительностью диабета от 4 до 11 лет, находившихся на лечении в неврологическом отделении Научно-практического медицинского центра ХНМУ. У 24 (35,8 %) больных была установлена легкая степень СД, у 32 (47,8 %) — средняя степень тяжести, у 11 (16,4 %) пациентов — тяжелая форма СД. 45,6 % обследованных пациентов в качестве гипогликемической терапии получали инсулинотерапию, 54,4 % больных — таблетированные сахароснижающие препараты.

Состояние церебральной гемодинамики и сосудистой реактивности артерий мозга изучалось по стандартным методикам с использованием датчиков частотой 2, 4, 8 МГц на аппарате «Спектромед-300» (Россия). Алгоритм исследования состояния церебральной гемодинамики и вазомоторной реактивности включал:

Ø исследование магистральных артерий головы и интракраниальных артерий методами экстра- и интракраниальной допплерографии с определением скоростных характеристик кровотока, индексов пульсации и циркуляторного сопротивления;

Ø исследование вазомоторной реактивности по результатам компрессионного теста. Известно, что кратковременная пальцевая компрессия общей сонной артерии (ОСА) на шее приводит к снижению перфузионного давления и развитию преходящего гиперемического ответа после прекращения компрессии, что позволяет рассчитать ряд показателей, характеризующих резервы ауторегуляции. Пациентам (с отсутствием стенозирующего поражения сонных артерий) проводили 5-6-секундную компрессию ОСА с прекращением компрессии в фазу диастолы. Регистрировали среднюю линейную скорость кровотока (ЛСК) в средней мозговой артерии (СМА) до компрессии ипсилатеральной ОСА — V1, во время компрессии — V2, после прекращения компрессии — V3, а также время восстановления исходной ЛСК — T (рис. 1). С помощью полученных данных рассчитывали коэффициент овершута (КО) по формуле: КО = V3/V1 .

Полученные данные были статистически обработаны с использованием пакета прикладных статистических программ Statistica 6.0. Рассчитывались средние значения показателей и ошибки средних. В качестве критерия значимости различия выборок использовались параметрические и непараметрические критерии Стьюдента и Уилкоксона. Различия принимались достоверными при р < 0,05.

Результаты исследования и их обсуждение

В ходе клинико-неврологического обследования больных с СД 2-го типа диабетическая энцефалопатия I степени была диагностирована у 29 пациентов (43,3 %), диабетическая энцефалопатия II степени — у 38 больных (56,7 %). Ведущими неврологическими синдромами у обследованных были: цефалгический синдром (96,5 % случаев); статико-координаторные нарушения (86,1 %); психоэмоциональные расстройства от эмоциональной лабильности до депрессивных синдромов (89,5 %); когнитивная дисфункция (89,5 %); внутричерепная гипертензия (84,2 %), пирамидная недостаточность по центральному типу (49,1 %), полиневропатический синдром (96,5 %), нарушение сна (66,7 %) и др. Цефалгический синдром в большинстве случаев (в 87,7 %) имел сосудистый генез (головные боли носили давящий характер, височную или лобно-височную локализацию, усиливались при смене метеоусловий и психоэмоциональном перенапряжении) или смешанный генез в комбинации с внутричерепной гипертензией (цефалгии распирающего характера с чувством давления изнутри на глазные яблоки и симптомами гиперестезии). Частым неврологическим синдромом при диабетической энцефалопатии были когнитивные нарушения легкой (27-26 баллов по шкале MMSE) и умеренной степени выраженности (25-24 балла по шкале MMSE). Следует отметить, что частота и выраженность объективной симптоматики у обследованных нарастали по мере прогрессирования тяжести диабетической энцефалопатии. Соматическое обследование больных с СД выявило сопутствующую артериальную гипертензию, преимущественно 2-й степени (86 % случаев), длительность которой составляла в среднем 12,3 ± 3,5 года; гиперхолестеринемию (82,5 %); избыточный вес (40,4 %).

Нарушение церебральной гемодинамики у больных с СД 2-го типа по данным допплерографического исследования характеризовалось снижением скорости кровотока в ВСА на 24,5 и 33,9 %, в СМА — на 25,4 и 34,5 %, в ПА — на 24,3 и 44,7 %, в ОА — на 21,7 и 32,6 % (при ДЭ I и II степени соответственно) по отношению к показателям в контрольной группе. Также были выявлены признаки повышения сосудис- того тонуса во всех исследованных сосудах по данным повышения индекса пульсации (Pi) и циркуляторного сопротивления (Ri) в среднем в 1,5 и 1,3 раза при ДЭ I степени и в 1,8 и 1,75 раза при ДЭ II степени. Гемодинамических значимых стенозов магистральных артерий головы у обследованных больных не было выявлено ни в одном случае (их наличие было критерием исключения из исследования в силу опасности проведения компрессионных проб).

Снижение возможностей коллатерального кровотока (анатомического звена церебрального сосудистого резерва) у обследованных пациентов с диабетической энцефалопатией I и II степени подтверждалось депрессией относительно контрольных показателей остаточной скорости кровотока в СМА (V2) в момент компрессии ипсилатеральной ОСА на 19,3 и 28,1 % соответственно. Это отражало нарушение проходимости перфорирующих и соединительных артерий, возможно, в результате их вторичной облитерации как проявление атеросклеротической и диабетической ангиопатии. Снижение коэффициента овершута у больных с диабетической энцефалопатией I и II степени относительно контроля на 11,6 и 16,9 % соответственно свидетельствовало о напряжении функционального звена цереброваскулярной реактивности, в частности, ее миогенного компонента вследствие нарушения при СД структуры сосудистой стенки и ее тонуса. Выявленное увеличение в 1,7 и 2,3 раза времени восстановления скорости кровотока до исходной отражало нарушение мета- болического контура сосудистой реактивности как проявление общих дисметаболических процессов, развивающихся в организме при СД, — нарушения полиолового пути окисления глюкозы, избыточного накопления сорбитола и про- оксидантов, развития гиперлипидемии, дефицита депрессорных факторов, необратимого гликозилирования белков, в том числе белков стенок сосудов .

Следует отметить, что выявленное ухудшение гемодинамических показателей и показателей цереброваскулярной реактивности у больных с СД 2-го типа находилось в прямо пропорциональной зависимости от степени тяжести диабетической энцефалопатии, что свидетельствовало о патогенетической роли нарушения ауторегуляции мозгового кровотока в развитии мозговых дисциркуляций и формировании энцефалопатического синдрома при СД 2-го типа.

Таким образом, нарушение церебральной гемодинамики и снижение реактивности сосудов головного мозга у пациентов с СД 2-го типа являются патогенетической основой формирования диабетической энцефалопатии. Учитывая тесную связь гемодинамических и обменных нарушений при СД, а также их комплексную роль в патогенезе развития цереброваскулярных и неврологических осложнений сахарного диабета, в схемы терапии диабетической энцефалопатии необходимо включать препараты комплексного действия, способные улучшить состояние цереброваскулярной реактивности, уменьшить явления вазоспазма в церебральных сосудах и нормализовать метаболические процессы в организме, что позволит улучшить состояние пациентов с СД и качество их жизни.


Список литературы

Список литературы находится в редакции