Линзы френеля фокусное расстояние. Линза френеля и ее роль в датчиках движения

У многих водителей словосочетание «парковка задним ходом» вызывает тихий ужас. Проблемы с чувством габаритов автомобиля, мертвая зона и возможность наехать на предмет или, что особенно страшно, заигравшегося ребенка. Особенно часто такие страхи встречаются у новичков за рулем и, конечно же, у прекрасной половины человечества. И хотя сейчас существует множество устройств и приборов, делающих процесс парковки более простым и безопасным, к сожалению, не всем они по карману. Но мало кто слышал о такой недорогой альтернативе камере заднего вида и парктронику, как парковочная линза Френеля. Что она из себя представляет, как работает и устанавливается, мы и рассмотрим в этой статье.

Парковочная линза Френеля – что это такое и как работает


Линза Френеля – это сложная линза, состоящая не из единого отшлифованного куска стекла (вогнутого, выпуклого или другой формы), а из отдельных, примыкающих друг к другу сферических колец малой толщины. Если посмотреть на линзу в сечении, мы увидим множество треугольных «зубчиков», которые, располагаясь впритык друг к другу под определенным углом, дают необходимый увеличивающий (собирающий, приближающий) или уменьшающий (рассеивающий, удаляющий) эффект. Но нас интересует именно рассеивающая линза, т.к. она может стать достойной и недорогой альтернативой парктронику при парковке задним ходом и вообще пригодиться во время езды на автомобиле.

Итак, как вы уже поняли, уменьшающая парковочная линза Френеля (или, как ее еще называют, линза панорамного обзора) с успехом применяется в процессе вождения автомобиля, чаще всего при парковке задним ходом. Благодаря этому прибору, у водителя значительно увеличивается угол обзора при движении назад — выявляются «мертвые» зоны автомобиля, становится видным пространство под задним стеклом . Также с помощью линзы очень удобно контролировать состояние прицепа. Еще одна приятная особенность линзы – это то, что вас не станут «слепить» фарами едущие позади автомобили – свет будет просто рассеиваться.

Но здесь все же есть пару нюансов.

Во-первых, линзу имеет смысл устанавливать только если у вас вертикальное заднее стекло (микроавтобус, внедорожник, минивен, хетчбэк).

А еще нужно учесть размеры своего автомобиля, заднего стекла и самой линзы. Если автомобиль небольшой, то стоит подумать о том, чтобы разрезать линзу пополам – производители обычно выпускают ее размером 20х25 см и, использовав ее целиком, можно обнаружить, что она закрыла весь обзор в заднее стекло. Если это ваш вариант, прежде чем закреплять ее на стекле, убедитесь, что выбрали правильную половину – одна из них будет показывать небо. Эту половину можно приклеить на верхнюю часть стекла – например, чтобы ветки не царапали. На крупногабаритных авто – наоборот, можно приклеить 2 панорамные линзы на боковые стекла, что также поможет выявить невидимые водителю участки.

Как устанавливать?


Благодаря своей конструкции, парковочная линза Френеля имеет совсем небольшую толщину, что позволяет закрепить ее даже без использования скотча или суперклея. Наиболее распространенные 2 варианта установки: на присосках и самоклеющаяся линза . О варианте установки на присосках достаточно много негативных отзывов, в основном, пользователи жалуются на ненадежность такого крепления. Зато в этом случае есть возможность немного регулировать угол наклона линзы.

Второй вариант — самый распространенный. Если вы купили такую линзу, то для установки вам потребуются вода, стеклоочиститель и, собственно, автомобиль . Располагается линза на внутренней стороне заднего стекла. В зеркало заднего вида нужно определить нижний видимый уровень, по которому следует располагать нижнюю грань линзы. Перед креплением, стекло нужно очистить, при этом использовать лучше нейтральные стеклоочистители, не содержащие спирта. После высыхания, гладкую поверхность линзы и часть стекла автомобиля, куда ее планируется разместить, смочить водой (можно из пульверизатора, можно аккуратно влажной губкой или ветошью). Затем, снизу вверх прижимать линзу к стеклу, удаляя при этом пузырьки воздуха. После этого подержать линзу прижатой еще пару секунд и отпустить. Все! Можно пользоваться.

Если вас заинтересовала линза панорамного обзора, то стоит она всего 400-500 рублей (против 2500 более-менее хорошего парктроника и 8000 рублей камеры заднего вида). А купить линзу можно либо заказав в интернете, либо порывшись в отделе автоаксессуаров таких супермаркетов, как «Метро», «OB», «Ашан» или подобных.

Линза, парктроник или камера заднего вида?

А теперь о том, насколько парковочная линза Френеля может конкурировать с парктроником.

Преимущества линзы Френеля перед парктроником :

  • во-первых, как уже говорилось выше, это цена, – линза стоит на порядок дешевле;
  • простая установка линзы;
  • в отличие от парктроника, который подает звуковые сигналы или показывает на дисплее расстояние до предмета сзади, вы воочию можете наблюдать за обстановкой при парковке и на дороге;
  • некоторые предметы, находящиеся между двумя задними датчиками парктроника не попадают в зону их видимости, и вы можете о них узнать, только ощутив толчок или услышав соответствующий звук при наезде на них.

Недостатки парковочной линзы Френеля перед парктроником :

  • подойдет не на все типы кузовов;
  • нужно привыкнуть к тому, что объекты, которые видны через линзу, намного ближе чем кажется;
  • парктроник все же определяет точное расстояние до объекта, а, пользуясь только линзой, вам придется полагаться на свое чувство расстояния и габаритов автомобиля.

Что касается камеры заднего вида , то конечно же здесь линза проигрывает в удобстве использования, отображении изображения и наличии так называемых парковочных линий. Все же гораздо удобней парковаться, когда на экране магнитолы или зеркале заднего вида с дисплеем отображается невидимая в зеркала часть пространства, еще и с линиями парковки. Однако, как и парктроник, камера стоит гораздо больше линзы и ее гораздо сложнее установить.

Для наглядного сравнения предлагаем посмотреть видео работы всех трех устройств:

  • как работает парктроник
  • как работает камера заднего вида
  • как работает парковочная линза Френеля

Надоели штрафные квитанции в почтовом ящике? Радар-детектор против «Стрелки» поможет избавиться от большей их части.

А в этой статье вы найдете обзор наиболее популярных радар-детекторов.

В завершении, хотелось бы привести несколько отзывов, показывающих отношение водителей к парковочной линзе Френеля:

Алена, 32 года, Хмельницкий

Очень удобно, когда паркуешься задним ходом к машине, капот которой ниже кромки заднего стекла. Парктроник, конечно, удобнее в таких случаях, но стоит дороже и устанавливается более хлопотно. Еще что нравится в линзе – в ней, как в телевизоре, видно все что происходит сзади меня и чего не видно в обычное зеркало заднего вида (например, когда выезжаешь со стоянки, а справа грузовик стоит – в линзу видно, если из-за него кто-то несется). А еще у меня развлечение – стоя на светофоре разглядывать номер и определять марку автомобиля:)

Сергей, 29 лет, Орел

Если нет парктроника – штука полезная. Набив руку, можно определить ориентиры, по которым будешь знать, когда останавливаться. У меня, например такой – подъезжая к автомобилю задним ходом, как только скрылся ее номерной знак, значит пора тормозить. Покупал японскую, не понятно, то ли пластиковая, то ли стеклянная. Форма перевернутого почтового конверта и крепиться в четырех точках. В целом мое мнение – это лучше, чем ничего и очень недорого.

Валерий, 39 лет, Калининград

Вещь удобная. Опробовал ее еще на вазовской двойке. В зависимости от расположения линзы по высоте, можно видеть бампер и все, что не видно в зеркало, а подъехавший сзади автобус виден полностью. Для водителей бусов – вещь незаменимая, а при использовании вместе с парктроником и камерой заднего вида, так вообще стопроцентно удачно припаркуетесь.

Родион, 25 лет, Санкт-Петербург

Линза прикреплена на заднее стекло минивена с помощью воды. Минусов пока не нашел, только плюсы: расширяет угол обзора – видно детей на велосипедах. Раньше видно было только капот сзадистоящей машины, теперь и номер. Перестали слепить фары. Зимой не покрывается инеем и не замерзает. И даже через грязное стекло, все-равно все что нужно видно. В общем, в дополнение к парктронику – отличная вещь, как альтернатива – тоже вариант.

В былые времена приближение к берегу для моряков было самой опасной частью их пути. Из-за неблагоприятных климатических условий мели или прибрежные скалы могли стать причиной кораблекрушения. Спасали моряков маяки, лучшие навигационные конструкции того времени. Долгое время на их вершинах просто разжигали костры, позже источниками света служили пока не стали применять электричество. В XIX веке светом, спасающим жизнь, стала линза Френеля, делающая свет маяка наиболее ярким и видимым издалека.

Составная сложная линза была создана Огюстеном Френелем, французским физиком, создателем волновой теории света. Линза Френеля составлена из отдельных небольшой толщины концентрических колец, примыкающих друг к другу и образующих цилиндр с источником света внутри. В сечении кольца имеют форму призм. Каждое из колец собирает свет в параллельный узкий пучок лучей, расходящийся от центра. При вращении цилиндра вокруг источника света лучи света простираются до самого горизонта. Цвет лучей, их число, временной промежуток между ними составляют особый неповторимый почерк маяка. Сводка с характеристиками различных маяков имелась на борту кораблей, и именно по ней моряки узнавали, какой маяк перед ними.

Линзы Френеля, установленные на маяках, стали важнейшим шагом в оснащении их мощными источниками света. Данные сложные составные линзы позволили увеличить концентрацию силы света до 80 000 свечей. До изобретения Френеля сфокусировать свет горящего фитиля или фонаря можно было, только поместив фонарь в фокус достаточно большого диаметра или вогнутого зеркала. Для этих целей был необходим цельный оптический элемент большого размера, который под воздействием собственной тяжести мог лопнуть. Поэтому использовались десятки вогнутых зеркал, в фокусе каждого из них находился отдельный фонарь. Это решение было неудобным.

Составная линза Френеля помогла достигнуть увеличения силы света, его концентрации в заданном направлении. Сборка отдельных оптических элементов не отражала свет, а работала на просвет, вращаясь вокруг излучающего во всех направлениях постоянного по интенсивности источника света.

С тех пор конструкции Френеля остаются непревзойденным техническим устройством, используемым не только для речных бакенов и маяков. В виде линз Френеля сначала делали стекла различных сигнальных фонарей, светофоров, автомобильных фар, деталей лекционных проекторов. Затем были созданы лупы в виде линеек, изготовленных из с малозаметными круговыми бороздками, каждая из которых являлась миниатюрной кольцевой призмой, а в целом они являли собой собирающую линзу. Полученная линза применяется как лупа для увеличения предмета, как объектив фотоаппарата, создающий перевернутое изображение.

Со временем сфера применения линз Френеля значительно расширилась. Она включает в себя разработку фототехники, различных осветительных приборов, датчиков слежения охранных систем, концентратора энергии для зеркал, применяемых в телескопах. Оптические свойства линз также используются в сфере мультимедиа. Так, компанией DNP, крупнейшим производителем высокотехнологичных проекционных экранов, на основе линзы создаются экраны Supernova. А в экранах обратной проекции применяется не только линза Френеля, но и другие оптические технологии, что позволяет получить уникальнейшие средства отображения.

В зависимости от области применения линзы могут иметь разный диаметр, различаться по типу. Известны два типа линз: кольцевые и поясные. Первые созданы для направления потока световых лучей в одну сторону. Кольцевые линзы нашли применение при ручной работе с мелкими деталями, вытеснив обычные лупы. Поясные линзы, способные пропускать пучки света в любых заданных направлениях, используются в промышленной отрасли.

Линза Френеля может быть положительной (собирающей) и отрицательной (рассеивающей). Отрицательная поливиниловая линза с коротким фокусом заметно увеличивает Она известна как линза Френеля парковочная. Расширение угла обзора, которое она дает, позволяет увидеть препятствия, находящиеся внизу за автомобилем, не входящие в поле зрения боковых зеркал или зеркало заднего обзора. Такая линза существенно облегчает маневрирование при парковке, буксировке прицепа и позволяя избежать наезда на играющих детей, животных или другие объекты.

Линза Френеля стала многофункциональным средством, ее изобретение сыграло немаловажную роль в развитии технологической сферы.

Поперечное сечение
(1) линзы Френеля и
(2) обычной линзы

Ли́нза Френе́ля - сложная составная линза , образованная совокупностью концентрических колец относительно небольшой толщины, примыкающих друг к другу. Сечение каждого из колец имеет форму треугольника, одна из сторон которого криволинейна, и это сечение представляет собой элемент сечения сплошной сферической линзы . Предложена Огюстеном Френелем .

Линзы Френеля бывают кольцевыми и поясными . Кольцевые концентрируют световой поток в одном направлении, поясные по всем направлениям в определённой плоскости .

Диаметр линзы Френеля может составлять от долей сантиметра до нескольких метров.

Применение

Создание параллельного пучка света линзой Френеля (находится в центре)

Линзы Френеля применяются:

Акустические линзы Френеля (точнее, изготавливаемые из звукопоглощающих материалов акустические зонные пластинки Френеля ) используются в акустике для формирования звукового поля.

    Френелевская лупа размером с кредитную карту

    Макрофотография поверхности линзы Френеля.

Линзы Френеля

Линза Френеля -- сложная составная линза. Состоит не из цельного шлифованного куска стекла со сферической или иными поверхностями (как обычные линзы), а из отдельных, примыкающих друг к другу концентрических колец небольшой толщины, которые в сечении имеют форму призм специального профиля. Предложена Огюстеном Френелем.

Эта конструкция обеспечивает малую толщину (а следовательно, и вес) линзе Френеля даже при большой угловой апертуре. Сечения колец у линзы строятся таким образом, что сферическая аберрация линзы Френеля невелика, лучи от точечного источника, помещённого в фокусе линзы, после преломления в кольцах выходят практически параллельным пучком (в кольцевых линзах Френеля).

Расчет линз Френеля

Линза Френеля - один из первых приборов, действие которого основано на физическом принципе дифракции света.

Данный прибор, и по сей день не утерял своего практического значения. Общая схема физической модели, на которой основано его действие, представлена на (рис. 1).

Рис. 1 Схема построения зон Френеля для бесконечно удаленной точки наблюдения (плоская волна)

Примем, что в точке О расположен точечный источник оптического излучения длины волны l. Естественным образом, как всякий точечный источник, он излучает сферическую волну, волновой фронт которой и изображен на рисунке окружностью. Зададимся условием изменить данную волну на плоскую, которая будет распространяться вдоль пунктирной оси. Несколько волновых фронтов этой изменяемой волны, отстающих друг от друга на l/2, изображены на (рис. 1). Для начала отметим, что рассматриваем изменяемую плоскую волну из имеющейся сферической в свободном пространстве. Поэтому, в соответствие с принципом Гюйгенса-Френеля, “источниками” данной изменяемой волны могут служить лишь электромагнитные колебания в имеющейся. И если это не устраивает пространственное распределение фазы этих колебаний, то есть волновой фронт (сферический) исходной волны. Давайте попробуем его подкорректировать. Проведем все по действиям.

Действие первое: заметим, что с точки зрения вторичных волн Гюйгенса - Френеля (которые сферические) пространственное смещение на целую длину волны в любом направлении не меняет фазы вторичных источников. Поэтому мы можем позволить себе например “разорвать” волновой фронт исходной волны как показано на (рис. 2).

Рис. 2 Эквивалентное распределение фазы вторичных излучателей в пространстве

Таким образом, мы “разобрали” исходный сферический волновой фронт на “кольцевые запчасти” номер 1, 2... и так далее. Границы этих колец, называемых зонами Френеля, определяются пересечением волнового фронта исходной волны с последовательностью смещенных друг относительно друга на l/2 волновых фронтов “проектируемой волны”. Получившаяся картинка уже существенно “попроще”, и представляет собой 2 слегка “шероховатых” плоских вторичных излучателя (зеленый и красный на рис. 2), которые однако, гасят друг друга из-за упомянутого полуволнового взаимного смещения.

Итак, мы видим, что зоны Френеля с нечетными номерами не только не способствуют выполнению поставленной задачи, но даже активно вредительствуют. Способов борьбы с этим два.

Первый способ (амплитудная линза Френеля). Можно данные нечетные зоны просто геометрически закрыть непрозрачными кольцами. Так и делается в крупногабаритных фокусирующих системах морских маяков. Конечно, этим можно не добиться идеальной коллимации пучка. Можно увидеть, что оставшаяся, зеленая, часть вторичных излучателей во-первых, не совсем плоская, а во-вторых разрывная (с нулевыми провалами на месте бывших нечетных зон Френеля).

Поэтому строго коллимированная часть излучения (а ее амплитуда - ни что иное как нулевая двумерная Фурье-компонента пространственного распределения фазы зеленых излучателей по плоскому волновому фронту с нулевым смещением, см. (рис. 2) будет сопровождаться широкоугловым шумом (все остальные Фурье-компоненты кроме нулевой). Поэтому линзу Френеля почти нереально использовать для построения изображений - только для коллимации излучения. Однако, тем не менее коллимированная часть пучка будет существенно мощнее, чем в отсутствие линзы Френеля, поскольку мы по крайней мере избавились от отрицательного вклада в нулевую Фурье-компоненту от нечетных зон Френеля.

Второй способ (фазовая линза Френеля). Можно сделать кольца, закрывающие нечетные зоны Френеля, прозрачными, с толщиной, соответствующей дополнительному фазовому набегу l/2. В таком случае волновой фронт “красных” вторичных излучателей сместится и станет “зеленым”, см. рис. 3.

Рис.3 Волновой фронт вторичных излучателей за фазовой линзой Френеля

Реально фазовые линзы Френеля имеют два варианта исполнения. Первый представляет собой плоскую подложку с напыленными полуволновыми слоями в областях нечетных зон Френеля (более дорогостоящий вариант). Второй - это объемная токарная деталь (или даже полимерная штамповка по единожды сделанной матрице, вроде грампластинки), исполненная в виде “ступенчатого конического пьедестала” со ступенькой в полдлины волны фазового набега.

Таким образом, Френелевские линзы позволяют справиться с колимацией пучков большой поперечной апертуры, одновременно являясь плоскими деталями небольшого веса и относительно небольшой сложности изготовления. Эквивалентная по эффективности обычная стеклянная линза для маяка весит с полтонны и стоит немногим дешевле, чем линза для астрономического телескопа.

Обратимся теперь к вопросу о том, что произойдет при смещении источника света вдоль оси относительно линзы Френеля, спроектированной исходно для коллимации излучения источника в положении О (рис. 1). Исходное расстояние от источника до линзы (то есть исходную кривизну волнового фронта на линзе) заранее условимся называть фокусным расстоянием F по аналогии с обычной линзой, см. (рис. 4).

Рис. 4 Построение изображения точечного источника линзой Френеля

Итак, чтобы при смещении источника из положения О в положение А линза Френеля продолжала быть линзой Френеля, нужно, чтобы границы зон Френеля на ней остались прежними. А эти границы - это расстояния от оси, на котором пересекаются волновые фронты падающей и “проектируемой” волны. Исходно падающая имела фронт с радиусом кривизны F, а “проектируемая” была плоской (красным цветом на рис. 4). На расстоянии h от оси эти фронты пересекаются, задавая границу какой-то из зон Френеля,

где n - номер зоны, начинающейся на этом расстоянии от оси.

При перемещении источника в точку А радиус падающего волнового фронта увеличился и стал R1 (синий цвет на рисунке). Значит, нам надо придумать новую поверхность волнового фронта, такую, чтобы она пересеклась с синей на том же расстоянии h от оси, дав то же MN на самой оси. Мы подозреваем, что такой поверхностью проектируемого волнового фронта может быть сфера с радиусом R2 (зеленый цвет на рисунке). Докажем это.

Расстояние h легко рассчитывается из “красной” части рисунка:


Здесь мы пренебрегаем малым квадратом длины волны по сравнению с квадратом фокуса - приближение, полностью аналогичное параболическому приближению при выводе обычной формулы тонкой линзы. С другой стороны, мы хотим найти новую границу n-й зоны Френеля в результате пересечения синего и зеленого волновых фронтов, назовем ее h1. Исходя из того, что мы требуем прежней длины отрезка MN:


Наконец, требуя h=h1, получаем:

Это уравнение совпадает с обычной формулой тонкой линзы. Более того, оно не содержит номера n рассматриваемой границы зон Френеля, а значит, справедливо для всех зон Френеля.

Таким образом, мы видим, что линза Френеля может не только коллимировать пучки, но и строить изображения. Правда, нужно иметь ввиду, что линза все-таки ступенчатая, а не непрерывная. Поэтому качество изображения будет заметно ухудшено за счет примеси высших Фурье-компонент волнового фронта, обсуждавшихся в начале этого раздела.

То есть линзу Френеля можно использовать для фокусирования излучения в заданную точку, но не для прецизионного построения изображений в микроскопических и телескопических устройствах.

Все вышесказанное относилось к монохроматическому излучению. Однако можно показать, что путем аккуратного выбора диаметров обсуждавшихся колец можно добиться разумного качества фокусировки и для естественного света.

Крупными буквами печатались слова совершенно несущественные, а все существенное изображалось самым мелким шрифтом.
М.Е. Салтыков-Щедрин

Всякий раз, перечитывая Михаила Евграфовича, поражаешься прозорливости тверского вице-губернатора. Вот откуда он узнал про продукты сырные , напитки пивные и прочий притворившийся едой корм, с крошечными буковками на упаковках?! Да, буковки разглядеть в 20 лет без проблемы. Но молодость - недуг, что проходит сам собой. И если у вас свои глаза ещё позволяют микротексты жёлтым по розовому читать, вашим старикам может очень пригодиться.

В принципе, наштамповать такие штуки (называется линза Френеля) не сложно. Штука сделать годную. Я опасался гораздо худшего. Но с качеством явно повезло.

Предварительный тест

На упаковке иероглифами написано «Увеличительное стекло высокой чёткости в формате визитки». Взял первую попавшуюся листовку. Кстати, можно грубо оценить увеличение.


Видим, что изображение не как в хорошем объективе - по направлению от центра к периферии чёткость немного падает. Но остаётся вполне приличным. В самой нижней части, где линза прикреплена к рамке - искажение. Но радужных разводов (хроматическая аберрация) и дисторсии (превращения квадрата в подушку или бочку) не заметно

Иллюстрации про аберрации

Дисторсия

Хроматическая аберрация

И пример

Как линза Френеля устроена

Дополнительная информация

Линза Френеля из экспозиции музея маяков в Пойнт Арена, Калифорния


Обычно для понимания идеи линзы Френеля приводят подобные картинки.


."… давайте разрежем плоско-выпуклую линзу на кольца и сложим их к плоскости." Конечно, это лишь упрощённая модель. Во-первых, в таком варианте разные зоны не соберут свет в одной точке, будет сдвиг вдоль оптической оси. Во-вторых, чтобы линза работала для наклонных пучков, переход от зоны к зоне делают не отвесным, а наклонным. В третьих, приходится искать компромисс между узкими и широкими кольцами… В результате расчёт получается достаточно сложным. Но нам, к счастью, считать и не надо:) Надо изготовителю.

Доставка и упаковка

Заказ 19 июля 2018, отгрузка 22 июля, получено 06 августа. Полный трек

Транспортная упаковка - серый ПЭ пакет. Коммерческая упаковка - прозрачный ПЭ пакет. Оба не заслуживают личных портретов.

Спецификация

Прозрачная лупа RIMIX
Цвет: Случайный
Материал: ПВХ
Размер: 85x55x1
Увеличение: 3 X

Внешний вид

Линза укомплектована пластиковым чехлом-кармашком, защищающим оптическую поверхность от царапин и загрязнений. Надпись иероглифами на чехле «Увеличительное стекло высокой чёткости в формате визитки» (Карта Тройка - для масштаба. Соответствует по размерам пластиковой банковской карте, но не палит номера карты.


Размеры карточки (не чехла) точно соответствуют размерам пластиковых карт


Увеличение на глаз я бы оценил раза в два, вот и проверим.

Фокусное расстояние

Проверяемых характеристик, кроме размеров всего одна - 3X увеличение
На бытовом уроне под увеличением понимают частное от деления расстояния оптимального зрения (принимается 250 мм, хотя у разных глаз - разное) и фокусного расстояния линзы. Приблизительно* измерить его проще всего, построив изображение от удалённого источника и измерив дистанцию от линзы до изображения. В качестве удалённого источника идеально подходит солнце за облаком - на листе бумаги появляется изображение не только солнца, но и облаков. То, что линза Френеля построила вполне чёткое изображение меня приятно удивило. Это на обычной линзе получается почти всегда. Линзы Френеля вроде нашей часто делают грубее и вместо изображения облаков получается туман. К сожалению, сфотать это дело мне это не удалось - диапазона яркостей камеры смартфона не хватило:(

*Прим. для зануд

На самом деле измерять нужно не от края лупы, а от т.н. задней главной плоскости. Но с нашей точностью разницей можно пренебречь. Тем более, что у линзы Френеля строго говоря столько же пар главных плоскостей, сколько кольцевых зон:)

Так вот, фокусное расстояние я намерил грубо 140 мм. То есть увеличение реально около 2Х крат (при 3, напомню, обещанных). А оптическая сила - около 7D. 7 диоптрий - это много по меркам очков. Характерная оптическая сила очков для пенсионеров 2-2.5-3 диоптрии. Хотя бывает и много больше, конечно.

В магазине

Это, конечно, главное применение. Линза нашла постоянное место в моём кошельке и пользуюсь ежедневно. Пример - типа сыр в Пятёрочке


Страшное слово ХИМОЗИН на проверку оказалось вполне законным составляющим - сычужным ферментом (хоть и вряд ли натуральным). А вот соли цианистой кислоты меня как-то напрягли.
Е536 – Ферроцианид калия
Само вещество - ферроцианид калия - очень слаботоксично, но при взаимодействии его с водой в процессе реакции выделяются ядовитые газы. Но их количество, как правило, не представляет серьезной опасности для здоровья. При взаимодействии гексацианоферрата с некоторыми кислотами может выделятся большое количество сильно-токсичного газа цианистого водорода. В пищевой промышленности используется, в основном, для предотвращения комкования и слеживания, в качестве добавки к поваренной соли. Так же применяется при производстве колбас, о чем всегда незамедлительно сообщает белый налет на оболочке продукта.

Собираем солнечный свет

Для детей такая штука тоже может быть забавной игрушкой, прежде всего жечь что-то солнечными лучами. Опыты ниже ставили в деревне на подручных подножных материалах, не стреляйте в пианиста. От чёрного шланга сразу идёт дым и воняет. На чек от термопринтера сфокусировать труднее, но получается, тк при нагреве он чернеет. А вот прожечь листок из школьной тетрадки я смог только со второй попытки и только около полудня


В процессе выяснилось, что у линзы огромная кома. На практике это означает, что держать для выжигания её нужно довольно точно перпендикулярно направлению на солнце. У меня это не вызывало проблем, а вот у дочери всё время получалось примерно вот так. (внимание на изображение на шланге)

Детские стихи: Подарил мне папа лупу

Подарил мне папа лупу
(Мне ужасно повезло!),
Всё рассматривать я буду
В это толстое стекло.

Увеличивает лупа
Всё, что только видит глаз,
Я теперь узнал, что в супе
Мама варит каждый раз.

У капусты вид ужасный -
Всё, пропал мой аппетит…
А второе съел я сразу,
И теперь мне не влетит.

Я поймал на кухне кошку,
Чтобы рассмотреть усы,
А она тотчас - в окошко,
Хоть страшней не лупа - псы!

Солнце светит в окна ярко,
Лучик мне в ладонь упал…
Лупу я навёл… как жарко!
Луч рассматривать я стал…

Точка обожгла ладошку
Я невольно вскрикнул… ой!..
Но поплакал я немножко,
Пряча лупу под тахтой.

Чтобы мама не ругала
Папу, лупу и меня,
Эту маленькую ранку
Смажу сам зеленкой я.

Олля Лукоева

Достоинства и недостатки

+ Неожиданно качественная картинка для такого типа линз. Говорит о качественном материале, правильном конструкторском расчёте и соблюдении технологии.
+ Лёгкая и компактная, умещается в кошельке и окажется в нужное время под рукой
+ Можно использовать в образовательных целях и как игрушку, поджигать солнечным светом
+ На длинной стороне небольшая линейка

Не дешёвый вариант. Линзы этого типоразмера есть и в разы дешевле
- Недодали кратности - 2 при заявленных 3
- В чехле не лезет в отделение для пластиковых карт. А без чехла нельзя, быстро придёт в негодность.

Итого

Линза мне понравилась больше, чем я ожидал. Ещё раз уточню, то полно предложений во много раз дешевле. Сильно сомневаюсь, что аналогичного качества. Но для целей изучения состава фальш-сыра в магазине радужные разводы по краям не смертельны. Так что каждый может выбрать под себя дешевле или качественнее. С оптикой постоянно такая петрушка.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +22 Добавить в избранное Обзор понравился +61 +96