Микроволны. Проектная работа по физике на тему: «СВЧ излучение

СВЧ-поле

СВЧ-поле, СВЧ-поля


Слитно или раздельно? Орфографический словарь-справочник. - М.: Русский язык . Б. З. Букчина, Л. П. Какалуцкая . 1998 .

Смотреть что такое "СВЧ-поле" в других словарях:

    Сущ., кол во синонимов: 1 поле (76) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    СВЧ-поле - СВЧ по/ле, СВЧ поля/ … Слитно. Раздельно. Через дефис.

    пороговое магнитное СВЧ поле - Значение амплитуды напряженности переменного магнитного поля в магнитном материале, выше которого составляющие тензора магнитной проницаемости зависят от амплитуды переменного магнитного поля. [ГОСТ 19693 74] Тематики материалы магнитные …

    Пашня, луг, поляна, нива; фон, равнина, степь. В чистом поле, в широком раздолье. Фон картины. Поля шляпы, поля (края, закраины) книги. См. арена, край, место. одного поля ягоды... Словарь русских синонимов и сходных по смыслу выражений. под.… … Словарь синонимов

    ГОСТ 23769-79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения - Терминология ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения оригинал документа: 39. π вид колебаний Ндп. Противофазный вид колебаний Вид колебаний, при котором высокочастотные напряжения …

    электровакуумный прибор СВЧ - ЭВП СВЧ Электронный прибор СВЧ, в котором электромагнитное СВЧ поле взаимодействует с электронными потоками или с волнами электронного потока, распространяющимися в вакууме или наполняющем прибор разреженном газе. [ГОСТ 23769 79] Тематики приборы … Справочник технического переводчика

    Электровакуумный прибор СВЧ - 2. Электровакуумный прибор СВЧ ЭВП СВЧ Vacuum tube Электронный прибор СВЧ, в котором электромагнитное СВЧ поле взаимодействует с электронными потоками или с волнами электронного потока, распространяющимися в вакууме или наполняющем прибор… … Словарь-справочник терминов нормативно-технической документации

    Активный резонатор СВЧ - 132. Активный резонатор СВЧ Active cavity Резонатор СВЧ, в котором СВЧ поле взаимодействует с рабочим электронным потоком Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

    Пассивный резонатор СВЧ - 134. Пассивный резонатор СВЧ Passive cavity Резонатор СВЧ, в котором СВЧ поле не взаимодействует с рабочим электронным потоком Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

    активный резонатор СВЧ - Резонатор СВЧ, в котором СВЧ поле взаимодействует с рабочим электронным потоком. [ГОСТ 23769 79] Тематики приборы и устройства защитные СВЧ Обобщающие термины конструктивные элементы EN active cavity … Справочник технического переводчика

Книги

  • Электродинамика плотных электронных пучков в плазме , Кузелев М.В.. Рассмотрены электромагнитные свойства плотных электронных пучков применительно к проблемам транспортировки энергии, их релаксации в плазме, усиления и генерацииэлектромагнитного излучения в…

Глава V. ЗАБОЛЕВАНИЯ, СВЯЗАННЫЕ С ВОЗДЕЙСТВИЕМ НЕКОТОРЫХ ФАКТОРОВ ВОЕННОГО ТРУДА

Широкое оснащение армии и военно-морского флота различной техникой в значительной мере изменяет условия труда личного состава Вооруженных Сил. Эти условия не исключают возможности соприкосновения отдельных специалистов с вредными факторами, действующими на них в процессе обслуживания и эксплуатации некоторых видов современного вооружения и технических средств. В ряде случаев, особенно при нарушениях правил техники безопасности и аварийных ситуациях, последнее может приводить к возникновению острых и хронических поражений, которые целесообразно объединять в отдельную нозологическую группу военно-профессиональных заболеваний.

Возникновение военно-профессиональных заболеваний могут вызывать воздействия следующих факторов: различных ядовитых технических жидкостей, окиси углерода, радиационных излучений малой интенсивности, сверхвысокочастотных электромагнитных волн и т. д.

Следует подчеркнуть, что военно-профессиональные заболевания, рассматриваемые в данном разделе прежде всего в плане патологии мирного времени, в условиях войны могут приобретать массовый характер, что сближает их в этом случае с боевыми поражениями.

Таковыми, например, могут стать поражения техническими жидкостями при разрушениях и взрывах хранилищ, отравления окисью углерода при обширных пожарах и т. п.

Влияние на организм сверхвысокочастотного электромагнитного (СВЧ-ЭМ) поля

Широкое применение генераторов СВЧ-ЭМ поля в военном деле и в народном хозяйстве, наряду с увеличением мощности излучателей, естественно, приводит к тому, что многочисленные группы специалистов, участвующие в заводском изготовлении, испытании, а также в эксплуатации различных радиолокационных станций (РЛС) и радиотехнических систем (РТС), могут подвергаться воздействию радиоволн сверхвысоких частот ("микроволн"), биологическая активность которых была впервые отмечена еще в тридцатых годах.

Конструктивные особенности выпускаемых РЛС и установленные правила эксплуатации практически исключают неблагоприятное влияние СВЧ-излучений на здоровье личного состава. Однако при аварийных ситуациях и при нарушении техники безопасности могут иметь место воздействия СВЧ-ЭМ поля, значительно превышающие предельно допустимые уровни облучения.

Этиология и патогенез

СВЧ-поле (микроволны) относится к той части спектра электромагнитных излучений, частота колебаний которой варьирует от 300 до 300 000 мгГц, а соответственно длина волны - от 1 м до 1 мм. В связи с этим различаются миллиметровые, сантиметровые, дециметровые волны. Микроволны отличаются свойством проникать в глубину тканей и поглощаться ими, вступая в сложное взаимодействие с биосубстратом. Обычно поглощается 40-50% падающей энергии (остальная часть отражается), причем микроволны проникают на глубину, равную примерно 1/10 длины волны. Из этого следует, что миллиметровые волны поглощаются в коже, тогда как дециметровые проникают в глубину на 10-15 см. Уже давно установлен факт избирательного поглощения СВЧ-излучений, детерминированный биофизическими (диэлектрическими) свойствами тканей.

Биофизический механизм поглощения СВЧ-поля не вполне выяснен. Наиболее вероятным представляется, что в основе поглощения микроволн лежит возникновение колебаний ионов и диполей воды. Допускается также резонансное поглощение энергии белковыми молекулами клетки. Сказанное о колебаниях диполей воды делает понятным, почему в тканях, богатых водой, СВЧ-энергия поглощается наиболее сильно. При достаточно высоких интенсивностях облучения поглощение микроволн сопровождается термическим эффектом (пороговый характер действия). При прочих равных условиях термический эффект более выражен в относительно бедно васкуляризированных органах и тканях, так как в таких областях система терморегуляции является недостаточно совершенной. Установлена следующая шкала чувствительности к СВЧ-полю: хрусталик, стекловидное тело, печень, кишечник, семенники.

Экспериментально также доказана высокая чувствительность нервной системы к воздействию микроволн. Так, при одинаковом облучении головы, туловища и конечностей у животных наиболее выраженные сдвиги регистрируются в случае облучения головы.

Для характеристики интенсивности облучения предложено понятие плотности потока мощности - ППМ. Оно представляет собою величину энергии, падающую в течение секунды на перпендикулярно расположенную плоскость. ППМ выражается в вт/см 2 ; в медико-гигиенической практике обычно пользуются меньшими коэффициентами: мвт/см 2 и мквт/см 2 . Регистрируемый термический эффект развивается при облучении в дозах, превышающих 10-15 мвт/см 2 .

Наряду с термическим механизмом действия СВЧ-поля работами преимущественно советских авторов (А. В. Триумфов, И. Р. Петров, 3. В. Гордон, Н. В. Тягин и др.) доказано нетермическое или специфическое действие этих излучений. При достаточно высоких уровнях облучения (свыше 15 мвт/см 2) термические эффекты, по-видимому, как бы перекрывают специфическое действие микроволн.

В общем патогенезе поражений СВЧ-полем схематически можно выделить как бы три этапа:

  1. функциональные (функционально-морфологические) изменения в клетках, прежде всего в клетках ЦНС, развивающиеся в результате непосредственного воздействия СВЧ-поля;
  2. изменение рефлекторно-гуморальной регуляции функции внутренних органов и обмена веществ;
  3. преимущественно опосредованное, вторичное, изменение функции (возможны и органические изменения) внутренних органов.

В структуре развивающихся изменений наряду с собственно патологическими процессами ("поломы") выявляются и компенсаторные реакции. При многократных повторных воздействиях следует считаться также с процессами кумуляции биологического эффекта, а также с адаптацией организма к действию СВЧ-поля (А. Г. Суббота). В эксперименте и клинических наблюдениях выявлены определенные иммунологические сдвиги, возникшие вследствие воздействия микроволн (Б. А. Чухловин и др.).

Клиника и диагностика

Клиника расстройств, возникающих у человека под воздействием СВЧ-ЭМ-поля, систематически изучалась только на протяжении последних 10-15 лет, причем советские исследователи (А. В. Триумфов, А. Г. Панов, Н. В. Тягин, В. М. Малышев и Ф. А. Колесник, 3. В. Гордон, Э. А. Дрогичина, А. А. Орлова, Н. В. Успенская, М. Н. Садчикова и мн. др.) внесли в эту работу вклад решающего значения. До 60-х годов представления о возможной симптоматологии и течении поражений от СВЧ-поля основывались почти исключительно на результатах изучения соответствующих экспериментальных моделей на животных.

К настоящему времени у нас в стране накопился значительный опыт диспансерного наблюдения за специалистами РЛС и РТС, работниками радиотехнических предприятий, сочетавшийся с углубленным обследованием определенных групп в условиях специализированных отделений и клинических стационаров; это обстоятельство позволяет конкретизировать, расширить и уточнить наши представления по интересующим вопросам.

Обращаясь к клинической характеристике расстройств, развивающихся в результате воздействия СВЧ-излучений, следует прежде всего разделить их на две формы: острые и хронические (поражения, расстройства, реакции); практическое значение их далеко не одинаково.

Острые формы поражения (реакции) встречаются практически очень редко; они могут возникать только при крайне грубом нарушении техники безопасности или аварийных ситуациях, если это имеет следствием облучение микроволнами в диапазоне заведомо термической интенсивности. В зависимости от конкретных параметров воздействия (ППМ, время, длина волны и др.) и реактивности организма могут возникать различные варианты острых реакций (поражений). В американской литературе описан случай смерти радиомеханика в результате острого интенсивного облучения от радара, но ряд авторов не считают доказанной связь заболевания и смерти с имевшим место воздействием СВЧ-излучений. В. М. Малышев и Ф. А. Колесник наблюдали развитие тяжелого многодневного приступа пароксизмальной тахикардии, наступившего у молодого, ранее совершенно здорового радиомеханика вскоре после облучения (авария) сантиметровыми волнами термической интенсивности. Эти приступы (по-видимому, диэнцефальные) часто повторяясь, в дальнейшем привели к тяжелой дистрофии миокарда и выраженной недостаточности кровообращения.

Острое интенсивное облучение может в отдельных редких случаях вызывать быстрое развитие локальных поражений. В частности, в мировой литературе описано около десяти случаев острого развития катаракты (в том числе и двусторонней) после локального облучения глаз при ППМ от многих сотен мвт/см 2 до нескольких вт/см 2 .

Редко встречаются острые реакции легкой степени. Судя по имеющимся немногочисленным описаниям, их симптоматология сводится к возникновению слабости, головных болей, легкому головокружению и тошноте. Этому способствуют нерезко выраженные объективные симптомы в виде изменения ритма сердечной деятельности (чаще тахикардия, иногда брадикардия), нарушения регуляции артериального давления (первоначально возникающая гипертония сменяется чаще гипотонией), местных ангиоспазмов и др. Эти симптомы обычно через 2-3 суток постепенно проходят без специального лечения, но у некоторых больных проявления астении и вегетативно-сосудистой дистонии могут держаться дольше, что, кроме интенсивности и длительности воздействия, в значительной мере зависит от реактивности организма.

В отдельных наблюдениях на добровольцах (и в самонаблюдениях) при ППМ субтермической интенсивности (около 1000 мквт/см 2) было отмечено небольшое изменение биоэлектрической активности коры головного мозга, снижение максимального и минимального давления и изменение тонуса крупных артерий.

В практической деятельности врача гораздо большее значение имеет выявление ранних форм тех расстройств (поражений), которые при незнании или нарушении техники безопасности могут возникать в результате длительного многократного облучения в дозах, превышающих предельно допустимые уровни.

Симптоматология и течение такого рода хронических форм ("синдрома хронического воздействия СВЧ-поля", "хронических поражений") в значительной мере варьируют в зависимости от различных параметров воздействия, сопутствующих неблагоприятных влияний, индивидуальной реактивности организма и других факторов.

Однако во всех случаях клиническая картина складывается из симптомов нарушения функции ЦНС, сочетающихся в разной степени с вегетативно-сосудистыми и висцеральными расстройствами; особенно характерен синдром астений (неврастений).

Кроме расстройств общего характера (слабость, повышенная утомляемость, беспокойный сон и т. п.), у больных часто возникают головные боли, головокружение, боли в области сердца, сердцебиение, потливость, ухудшение аппетита; реже предъявляются жалобы на нерегулярный стул, различные неприятные ощущения в животе, снижение сексуальной потенции, расстройство менструального цикла.

Головные боли обычно бывают неинтенсивными, но длительными; локализуются они в лобной или затылочной области, возникают чаще в утренние часы и к концу рабочего дня. Непродолжительный отдых в горизонтальном положении (по приходе с работы) у многих приводит к исчезновению головных болей. Часто также больные жалуются на головокружения, возникающие обычно при быстром изменении положения тела или при длительном неподвижном стоянии. Так называемые "сердечные боли" носят в большинстве случаев характер кардиалгии. Боли ощущаются преимущественно в области верхушки сердца, бывают длительными и ноющими; иногда больной ощущает кратковременное (почти мгновенное) колотье в околосердечной области. Типичные стенокардические боли приходится наблюдать редко. Опуская характеристику других, менее часто возникающих жалоб, представляется необходимым подчеркнуть, что для "внутренней картины болезни", обусловленной длительным воздействием СВЧ-ЭМ-поля, в высокой степени характерно сочетание жалоб, отражающих изменение функции нервной системы, с жалобами, относящимися к нарушению функции системы кровообращения. Что касается неврологических нарушений, то они обычно укладываются в картину астенического (неврастенического) синдрома.

Очевидный практический интерес имеет вопрос о времени появления перечисленных жалоб, считая от начала работы с генераторами СВЧ-ЭМ-поля. Имеющиеся литературные данные и практический опыт свидетельствуют о том, что у разных лиц первые жалобы возникают через весьма различные промежутки времени от начала воздействия - от нескольких месяцев до нескольких лет. Эти различия зависят не только от индивидуальной реактивности организма, но, по-видимому, в решающей степени - и от параметров воздействия, прежде всего от величины плотности потока мощности (ППМ) электромагнитного поля.

Объективные признаки патологических изменений, обнаруживаемые обычными физическими методами исследования, бывают выражены нерезко и не носят специфического характера. Наиболее часто выявляются симптомы, указывающие на вегетативнососудистые нарушения: регионарный гипергидроз, акроцианоз, похолодание (на ощупь) кистей и стоп, "игра вазомоторов" лица. Отметим также, что у больных закономерно наблюдается психоэмоциональная лабильность, реже - наклонность к депрессивным реакциям и заторможенность, тремор век и пальцев вытянутых рук.

Весьма характерна лабильность пульса и артериального давления с наклонностью к брадикардии и гипотонии. При обследовании соответствующих профессиональных контингентов, предъявляющих жалобы па состояние здоровья, брадикардия и артериальная гипотония выявляются в 25-40%. Нередко обнаруживается небольшое увеличение сердца влево, еще более часто отмечается приглушение первого тона на верхушке и нежный систолический шум (у 1/3-1/2 обследованных). Небольшое увеличение печени устанавливается в 10-15%. Другие объективные симптомы, описанные некоторыми авторами (сухость кожи, выпадение волос, ломкость ногтей, геморрагические проявления, болезненность при пальпации живота), наблюдаются редко и не могут быть пока с убежденностью отнесены к проявлениям непосредственного влияния СВЧ-ЭМ-поля. Довольно часто приходится наблюдать то или иное нарушение общей и местной терморегуляции. В отличие от ряда авторов мы наблюдали гипотермию несколько реже, чем субфебрилитет.

Рентгенологические исследования органов грудной клетки позволяют выявить нередко умеренную гипертрофию левого желудочка сердца. При записи ЭКГ отклонение от нормы, если не считать брадикардии и респираторной аритмии, констатируется нечасто. В единичных случаях наблюдаются экстрасистолическая аритмия, умеренное замедление внутрипредсердной и внутрижелудочковой проводимости, признаки коронарной недостаточности. Несколько чаще выявляются признаки диффузных мышечных изменений, умеренно выраженных (снижение вольтажа зубцов начальной части желудочкового комплекса и их деформация, уплощение зубца T).

Под влиянием длительного воздействия СВЧ-ЭМ-поля содержание гемоглобина и эритроцитов существенно не изменяется. Количество ретикулоцитов остается в большинстве случаев в пределах нормы, хотя в некоторых сообщениях указывается на возможность развития как умеренно выраженного ретикулоцитоза, так и ретикулоцитопении. Достаточно характерным является неустойчивость содержания лейкоцитов в периферической крови с разнонаправленной тенденцией у разных лиц; у одних наблюдается тенденция к лейкоцитозу, значительно чаще встречается лейкопения.

Лейкоцитарная формула характеризуется тенденцией к относительному лимфоцитозу и моноцитозу, а также изменчивостью абсолютного и процентного содержания лимфоцитов, моноцитов, нейтрофилов. Качественные изменения нейтрофилов регистрируются редко. Число тромбоцитов у большинства больных остается на нижней границе нормы.

Исследование функции желудочно-кишечного тракта позволяет нередко выявить наклонность к угнетению желудочной секреции и нерезко выраженные нарушения его моторной деятельности (гипотония желудка, вялая перистальтика, дуоденостаз); наблюдаются также явления дискинезии тонкого и толстого кишечника. Комплексное изучение функции печени дает возможность у части больных установить нерезкие нарушения билирубиновыделительной (повышение уровня билирубина в крови и выделения уробилина с мочой) и дезинтоксикационный (по пробе Квика) ее функции.

В последние годы ряд авторов проводили изучение различных показателей обмена веществ у лиц, подвергающихся длительному воздействию СВЧ-ЭМ-поля. В результате этих исследований было установлено, что содержание холестерина и лецитина в сыворотке крови не претерпевает существенных изменений. Обычно оказывается нормальным общее количество белков крови. Что касается показателей углеводного обмена, то может быть отмечена наклонность к снижению уровня сахара крови натощак. Среди различных разновидностей встречающихся сахарных кривых наиболее характерны так называемые низкие или плоские.

Изучение водно-минерального обмена у длительно контактирующих с генераторами СВЧ-ЭМ-поля не позволило обнаружить выраженных отклонений от нормы. Вместе с тем имеются некоторые данные, могущие косвенно указывать на нерезкое изменение функции надпочечников (лабильность и некоторое снижение экскреции 17-кетостероидов).

Заключая описание симптоматологии, следует констатировать, что у обследуемых закономерно выявляются не только признаки, указывающие на изменения функции ЦНС (астенический, неврастенический синдромы), но и симптомы функционального нарушения ряда внутренних органов, среди которых на первый план выступает изменение функции системы кровообращения.

Распознавание расстройств, связанных с воздействием микроволн, является нередко трудной и ответственной задачей, предусматривающей не только обычное тщательное клиническое изучение обследуемого, но и обязательное изучение его профессионального анамнеза, а также характеристики гигиенических условий работы, включая данные дозиметрии. Следовательно, диагноз должен основываться не только на клинических, но и на гигиено-дозиметрических сведениях.

При обследовании больного важно первоначально по общим правилам исключить другие заболевания (или воздействие других этиологических факторов), проявляющиеся на определенных стадиях сходной клинической картиной. Диагностика, естественно, осложняется в тех практически нередких случаях, когда обследуемый действительно одновременно подвергается влиянию нескольких неблагоприятных (специфических или неспецифических) факторов. В этих случаях нужно по возможности точнее оценить меру того или иного воздействия.

По степени выраженности и стойкости расстройств различают начальные легко обратимые формы (I степень) и выраженные стойкие формы (II степень). Предлагается также выделять и "хроническое поражение" ("синдром хронического воздействия") III степени, когда наряду с выраженными изменениями функции нервной, сердечно-сосудистой и других систем выявляются органические и дистрофические изменения в органах. Однако такие тяжелые формы в настоящее время практически не встречаются.

Лечение и профилактика

Важнейшим условием успешного лечения является прекращение контакта с СВЧ-полем. Терапия должна начинаться как можно раньше, быть индивидуализированной и комплексной. Этим больным должна обеспечиваться достаточно калорийная, полноценная, хорошо витаминизированная пища. В общем комплексном лечении важное значение придается различным методам психотерапии. Среди пациентов нередко встречаются лица, напуганные своим недугом и преувеличивающие опасность неблагоприятного влияния профессионального фактора. В таких случаях беседа или серия бесед, в процессе которых неторопливо разъясняется характер заболевания, рассеиваются необоснованные тревоги и внушается уверенность в благоприятном исходе, имеют первостепенное значение.

Из лекарственных средств, применявшихся для терапии рассматриваемых нарушений и прежде всего гипотонических состояний, могут быть названы растительные стимуляторы нервной системы: спиртовая настойка корня женьшеня, настойка левзеи или аралии, китайский лимонник, стрихнин, секуринин, кофеин. В последние годы мы наблюдали благоприятный эффект от назначения настойки заманихи, а также элеутерококка.

Отдельными авторами описаны также положительные результаты от назначения при гипотонических состояниях различного происхождения синтетических препаратов адреналинового ряда (веритолпрометин, эффортил), эфедрина, атропина, теобромина, эуфиллина, но надо сказать, что эти препараты не получили распространения. Из гормональных препаратов можно рекомендовать кортин и ДОКСА. Из витаминных препаратов показаны В 1 В 12 и аскорбиновая кислота. По отношению к назначению бромидов скорее имеются основания высказаться сдержанно.

При лечении больных рассматриваемой группы рекомендуется применять один из растительных стимуляторов нервной системы, который после трех-четырех-недельного применения в случае отсутствия отчетливого эффекта следует заменять другим. Заметных различий в степени эффективности указанных препаратов не наблюдается. При выраженной вялости, заторможенности одновременно с одним из указанных средств нередко назначаются на 10-15 дней препараты кофеина. Больным с эмоциональной возбудимостью назначается стрихнин вместе с валерианой. В последнее время еще лучшие результаты наблюдались от применения малых транквилизаторов (триоксазин, либриум, мепротан и другие).

В общем комплексном лечении у большинства больных использовались методы физкультуры и физические методы лечения (ионофорез с кальцием, общее ультрафиолетовое облучение, прохладные души и др.).

Обследование и лечение лиц разбираемой профессиональной принадлежности должно проводиться в специализированных стационарах в связи с новизной и недостаточной изученностью этой формы патологии. В дальнейшем больные должны находиться на длительном диспансерном наблюдении; при этом имеются все основания в общем плане лечебно-профилактических мероприятий отводить существенное место санаторно-курортному лечению.

В нашей стране разработана научно обоснованная система профилактики неблагоприятного воздействия СВЧ-поля на организм работающих. Она предусматривает проведение санитарного наблюдения за конструированием РЛС и РТС, проведение гигиенического контроля за условиями работы. Имеется ряд инженерно-технических мероприятий, обеспечивающих защиту от воздействия СВЧ-излучений (правильный выбор позиции РЛС на возвышенностях, экранирование при необходимости жилых помещений и др.). Создаются специальные образцы защитной одежды (металлизированная ткань, отражающая микроволны) и защитных очков (металлизированное стекло) для условий работы, связанных с относительно интенсивным облучением (около 1000 мквт/см 2).

У нас действуют строгие нормы ПДУ, надежно обеспечивающие безопасность работы. Так, при облучении микроволнами в течение 8 ч ППМ не должна превышать 10 мквт/см 2 , при работе в течение 2 ч/суток - ППМ соответственно не более 100 мквт/см 2 . При ППМ до 1000 мквт/см 2 продолжительность работы не должна превышать 15-20 мин. Если РЛС работает в режиме кругового обзора или сканирования (секторальный обзор), то ПДУ увеличивается в 10 раз (коэффициент 10).

Медико-гигиеническая профилактика не ограничивается контролем за соблюдением установленных гигиенических условий работы (включая дозиметрический контроль). Она включает проведение медицинского отбора специалистов для работы с генераторами СВЧ поля, а также постоянное диспансерное наблюдение за работающими. Установлено, что занятия физкультурой, повышение общего развития, полноценное питание с достаточным введением витаминов групп В и С способствуют повышению резистентности организма к воздействию микроволн.

Среди огромного разнообразия электромагнитных волн, существующих в природе, весьма скромное место занимает микроволновое или сверхвысокочастотное излучение (СВЧ). Отыскать этот частотный диапазон можно между радиоволнами и инфракрасной частью спектра. Протяжённость его не особенно велика. Это волны длиной от 30 см до 1 мм.

Поговорим о его происхождении, свойствах и роли в сфере обитания человека, о том, как влияет этот «молчаливый невидимка» на человеческий организм.

Источники СВЧ-излучения

Существуют природные источники микроволнового излучения - Солнце и другие космические объекты. На фоне их излучения и происходило формирование и развитие человеческой цивилизации.

Но в наш, насыщенный всевозможными техническими достижениями век, к естественному фону присовокупились ещё и рукотворные источники:

  • радиолокационные и радионавигационные установки;
  • системы спутникового телевидения;
  • сотовые телефоны и микроволновые печи.

Как микроволновое излучение влияет на здоровье человека

Результаты исследования влияния микроволнового излучения на человека позволили установить, что СВЧ лучи не обладают ионизирующим действием. Ионизированные молекулы - это дефектные частички вещества, приводящие к мутации хромосом. В результате живые клетки могут приобрести новые (дефектные) признаки. Этот вывод не означает, что микроволновое излучение не оказывает вред на человека.

Изучение влияния СВЧ-лучей на человека, позволило установить следующую картину - при их попадании на облучаемую поверхность, происходит частичное поглощение поступающей энергии тканями человека. В результате в них возбуждаются высокочастотные токи, нагревающие организм.

Как реакция механизма терморегуляции, следует усиление циркуляции крови. Если облучение было локальным, возможен быстрый отвод тепла от разогретых участков. При общем облучении такой возможности нет, поэтому оно является более опасным.

Поскольку циркуляция крови выполняет роль охлаждающего фактора, то в органах, обеднённых кровеносными сосудами, тепловой эффект выражен наиболее ярко. В первую очередь - в хрусталике глаза, вызывая его помутнение и разрушение. К сожалению, эти изменения необратимы.

Наиболее значительной поглощательной способностью отличаются ткани с большим содержанием жидкого компонента: крови, лимфы, слизистой желудка, кишечника, хрусталика глаза.

В результате могут наблюдаться:

  • изменения в крови и щитовидной железе;
  • снижение эффективности адаптационных и обменных процессов;
  • изменения в психической сфере, которые могут привести к депрессивным состояниям, а у людей с неустойчивой психикой - спровоцировать склонность к суициду.

Микроволновое излучение обладает кумулятивным эффектом. Если в первое время его воздействие проходит бессимптомно, то постепенно начинают формироваться патологические состояния. Вначале они проявляются в учащении головных болей, быстрой утомляемости, нарушениях сна, повышении артериального давления, сердечных болях.

При длительном и регулярном воздействии СВЧ излучение приводит к глубинным изменениям, перечисленным ранее. То есть, можно утверждать, что СВЧ излучение оказывает негативное влияние на здоровье человека. Причём отмечена возрастная чувствительность к микроволнам - молодые организмы оказались более подверженными влиянию СВЧ ЭМП (электромагнитного поля).

Средства защиты от СВЧ-излучения

Характер воздействия СВЧ излучения на человека зависит от следующих факторов:

  • удалённости от источника излучения и его интенсивности;
  • продолжительности облучения;
  • длины волны;
  • вида излучения (непрерывное или импульсное);
  • внешних условий;
  • состояния организма.

Для количественной оценки опасности введено понятие плотности излучения и допустимой нормы облучения. В нашей стране этот стандарт взят с десятикратным «запасом прочности» и равен 10 микроватт на сантиметр (10 мкВт/см). Это означает, что мощность потока СВЧ энергии, на рабочем месте человека не должна превышать 10 мкВт на каждый сантиметр поверхности.

Как же быть? Сам собой напрашивается вывод, что следует всячески избегать воздействия микроволновых лучей. Уменьшить воздействие СВЧ-излучения в сфере быта достаточно просто: следует ограничить время контакта с бытовыми его источниками.

Совершенно иной механизм защиты должен быть у людей, чья профессиональная деятельность связана с воздействием СВЧ радиоволн. Средства защиты от СВЧ-излучения подразделяются на общие и индивидуальные.

Поток излучаемой энергии убывает обратно пропорционально увеличению квадрата расстояния между излучателем и облучаемой поверхностью. Поэтому важнейшей коллективной защитной мерой является увеличение расстояния до источника излучения.

Другими действенными мерами по защите от СВЧ-излучения являются следующие:

Большая часть из них базируется на основных свойствах микроволнового излучения - отражении и поглощении веществом облучаемой поверхности. Поэтому защитные экраны подразделяются на отражающие и поглощающие.

Отражательные экраны выполняются из листового металла, металлической сетки и металлизированной ткани. Арсенал защитных экранов достаточно разнообразен. Это листовые экраны из однородного металла и многослойные пакеты, включающие слои изоляционных и поглощающих материалов (шунгита, углеродистых соединение) и т. д.

Конечным звеном в этой цепи являются средства индивидуальной защиты от СВЧ-излучения. Они включают спецодежду, выполненную из металлизированной ткани (халаты и фартуки, перчатки, накидки с капюшонами и вмонтированными в них очками). Очки покрыты тончайшим слоем металла, отражающего излучение. Их ношение обязательно при облучении в 1 мкВт/см.

Ношение спецодежды снижает уровень облучения в 100–1000 раз.

Польза микроволнового излучения

Вся предыдущая информация c негативной направленностью, имеет своей целью упредить нашего читателя от, исходящей от СВЧ-излучения, опасности. Однако среди специфических действий микроволновых лучей встречается термин стимуляция, то есть улучшение под их влиянием общего состояния организма или чувствительности его органов. То есть воздействие СВЧ-излучения на человека может быть и полезным. Терапевтическое свойство микроволнового излучения основано на его биологическом действии при физиотерапии.

Излучения, исходящие от специализированного медицинского генератора, проникает в организм человека на заданную глубину, вызывая прогревание тканей и целую систему полезных реакций. Сеансы СВЧ-процедур оказывают болеутоляющее и противозудное действие.

Их с успехом используют для лечения фронтита и гайморита, невралгии тройничного нерва.

Для воздействия на эндокринные органы, органы дыхания, почки, и лечения гинекологических заболеваний используют микроволновое излучение с большей проникающей способностью.

Исследование влияния СВЧ-излучения на организм человека начались несколько десятилетий назад. Накопленных знаний достаточно, чтобы быть уверенными в безвредности естественного фона этих излучений для человека.

Разнообразные генераторы этих частот, создают дополнительную дозу воздействия. Однако, их доля очень мала, а, используемая защита достаточно надёжна. Поэтому фобии об их огромном вреде не более чем миф, если соблюдаются все условия эксплуатации и защиты от промышленных и бытовых источников микроволновых излучателей.

Сверхвысокочасто́тное излуче́ние

Презентация к уроку «Шкала электромагнитных волн»

учителя МАОУ лицея №14

Ермаковой Т.В.



Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн

  • Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твёрдыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

Свойства СВЧ-излучения


  • В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более

широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров.

  • Свойства СВЧ-излучения

  • Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным. Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролёта электрона и межэлектродная ёмкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы. За это время СВЧ-поле успевает изменить своё направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.
  • ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЯ

В магнетроне, изобретённом в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения - принцип объёмного резонатора.

  • МАГНЕТРОН Представляет собой двухэлектродную электронную лампу, которая генерирует СВЧ-излучение за счет движения электронов под действием взаимно перпендикулярных электрического и магнитного полей. Применяется в качестве генераторной лампы радио- и радиолокационных передатчиков СВЧ-диапазона.

1 - катод; 2 - токоподводы нагревателя; 3 - анодный блок; 4 - объемные резонаторы; 5 - выходная петля связи; 6 - коаксиальный кабель.

  • Магнетрон

  • Основан на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объёмного резонатора в форме бублика. Управляющая сетка и сетки резонатора группируют электроны в отдельные "сгустки", так что электроны пересекают зазор резонатора только в определённые моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передаётся резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания.

1 - катод; 2 - резонатор; 3 - отражательная пластина; 4 - резонаторные сетки; 5 - выходная петля связи; 6 - управляющая сетка.

  • Клистрон

  • Представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне. Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча.
  • Лампа бегущей волны (ЛБВ).

  • Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. герц.

Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора

  • Плоские вакуумные триоды

  • диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.
  • Генератор на диоде Ганна

  • После Второй мировой войны начались интенсивные исследования СВЧ-радиолокации, хотя принципиальная ее возможность была продемонстрирована еще в 1923 в Научно-исследовательской лаборатории ВМС США. Суть радиолокации в том, что в пространство испускаются короткие, интенсивные импульсы СВЧ-излучения, а затем регистрируется часть этого излучения, вернувшаяся от искомого удаленного объекта - морского судна или самолета.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами ок. 50 км.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • Здесь на помощь приходят связные искусственные спутники Земли; выведенные на геостационарную орбиту, они могут выполнять функции ретрансляционных станций СВЧ-связи. Электронное устройство, называемое активно-ретрансляционным ИСЗ, принимает, усиливает и ретранслирует СВЧ-сигналы, передаваемые наземными станциями.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • Термообработка. СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Промышленность выпускает также СВЧ-печи бытового назначения.
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ


  • Термообработка. Американские военные представили мощный СВЧ-излучатель, "тепловое" оружие, которое способно разгонять толпы демонстрантов и устанавливать невидимую "стену", через которую человек не сможет пройти. Установка получила название "Система активного сдерживания (отбрасывания)" (Active Denial System, ADS), прозвано "тепловой луч" и "микроволновая пушка"
  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • . СВЧ-излучение сыграло важную роль в исследованиях электронных свойств твердых тел. Когда такое тело оказывается в магнитном поле, свободные электроны в нем начинают вращаться вокруг магнитных силовых линий в плоскости, перпендикулярной направлению магнитного поля. Частота вращения, называемая циклотронной, прямо пропорциональна напряженности магнитного поля и обратно пропорциональна эффективной массе электрона.

Такие измерения дали много ценной информации об электронных свойствах полупроводников, металлов и металлоидов. Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства.

  • ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

  • В настоящее время в мире существуют два основных стандарта на уровень безопасного излучения. Один из них разработан Американским Национальным Институтом Стандартов (ANSI) и предлагает считать безопасным излучение с плотностью мощности в 10 мВт/см2. Для микроволновых печей стандартом является плотность мощности в 1 мВт/см2 на расстоянии 5 см от печи.

Европейский стандарт (в том числе и российский) предполагает, что уровень плотности излучения не должен превышать 10 мкВт (0.01 мВт) на квадратный сантиметр на расстоянии 50 см. от источника излучения

  • Безопасность при использовании СВЧ-устройств

Я был сильно удивлён, когда мой простенький самодельный детектор-индикатор, зашкалил рядомс работающей СВЧ печкой в нашей рабочей столовой. Она же вся экранирована, может неисправность какая? Решил проверить свою, новую печь, ей практически не пользовались. Индикатор тоже отклонился на всю шкалу!


Такой простенький индикатор я собираю за короткое время каждый раз, когда выезжаю на полевые испытания приемно-передающей аппаратуры. Очень помогает в работе, не надо таскать за собой массу приборов, простой самоделкой работоспособность передатчика всегда легко проверить, (где антенный разъём не до конца довернули, или питание забыли включить). Заказчикам такой стиль ретро-индикатора очень нравится, приходится оставлять в подарок.

Достоинство – это простота конструкции и отсутствие питания. Вечный прибор.

Делается легко, намного проще, чем точно такой же «Детектор из сетевого удлинителя и тазика для варенья » средневолнового диапазона. Вместо сетевого удлинителя (катушки индуктивности) – кусок медного провода, по аналогии можно несколько проводов параллельно, хуже не будет. Сам провод в виде окружности длиной 17 см, толщинойне менее 0,5 мм (для большей гибкости использую три таких провода) является как колебательным контуром внизу, так и рамочной антенной верхней части диапазона, который составляет от 900 до 2450 МГц (выше не проверял работоспособность). Можно применить более сложную направленную антенну и согласование с входом, но такое отступление не будет соответствовать названию темы. Переменный, построечныйили просто конденсатор (он же тазик) не нужен, на СВЧ – два соединения рядом, уже конденсатор.

Германиевый диод искать не надо, его заменит PIN диод HSMP : 3880, 3802, 3810, 3812 и т.д., или HSHS 2812, (я его использовал). Хотите продвинуться выше частоты СВЧ печки (2450 МГц), выбирайте диоды с меньшей ёмкостью (0,2 пФ), возможно подойдут диоды HSMP -3860 – 3864. При монтаже не перегрейте. Паять надо точечно-быстро, за 1 сек.

Вместо высокоомных наушников - стрелочный индикатор.Магнитоэлектрическая система имеет преимущество - инерционность. Помогает плавно двигаться стрелке конденсатор фильтра (0,1 мкФ). Чем выше сопротивление индикатора, тем чувствительнее измеритель поля (сопротивления моих индикаторов составляет от 0,5 до 1,75 кОм). Заложенная в отклоняющейся или подёргивающейся стрелке информация действует на присутствующих магически.

Такой индикатор поля, установленный рядом с головой разговаривающей по мобильному телефону, сначала вызовет на лице изумление, возможно, вернёт человека к действительности, спасёт от возможных заболеваний.

Если есть ещё силы и здоровье обязательно ткните мышкой в одну из этих статей.

Вместо стрелочного прибора можно использовать тестер, который будет измерять постоянное напряжение на самом чувствительном пределе.

Схема индикатора СВЧ со светодиодом.
Индикатор СВЧ со светодиодом.

Попробовал в качестве индикатора светодиод . Такую конструкцию можно оформить в виде брелка, используя плоскую 3-х вольтовою батарейку, или вставить в пустой корпус мобильного телефона. Дежурный ток устройства 0,25 мА, рабочий ток напрямую зависит от яркости светодиода и составит около 5 мА. Напряжение, выпрямленное диодом, усиливается операционным усилителем, накапливается на конденсаторе и открывает ключевое устройство на транзисторе, который включает светодиод.

Если стрелочный индикатор без батарейки отклонялся в радиусе 0,5 - 1 метра, то цветомузыка на диоде отодвинулась до 5 метров, как от сотового телефона, так и от СВЧ печки. Насчёт цветомузыки не ошибся, сами убедитесь, что максимальная мощность будет только при разговоре по мобильному телефону и при постороннем громком шуме.

Регулировка.


Я собирал несколько таких индикаторов, и заработали они сразу. Но всё же нюансы бывают. Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.

Для удобства пользования можно ухудшить чувствительность, уменьшив резистор 1мОм, или уменьшить длину витка провода. С приведёнными номиналами поля СВЧ базовых телефонных станций чувствует в радиусе 50 – 100 м.
С таким индикатором можно составить экологическую карту своего района и выделить места, где нельзя зависать с колясками или долго засиживаться с детьми.

Находиться под антеннами базовых станций
безопаснее, чем в радиусе 10 - 100 метров от них.

Благодаря этому прибору я пришёл к выводу,какие мобильные телефоны лучше, то есть имеют меньшее излучение. Поскольку это не реклама, то скажу сугубо конфиденциально, шёпотом. Лучшие телефоны – это современные, с выходом в Интернет, чем дороже, тем лучше.

Аналоговый индикатор уровня.

Я решил попробовать чуть усложнить индикатор СВЧ, для чего добавил в него аналоговый измеритель уровня. Для удобства использовал ту же элементную базу. На схеме три операционных усилителя постоянного тока с разным коэффициентом усиления. В макете я остановился на 3-х каскадах, хотя запланировать можно и 4-е, используя микросхему LMV 824 (4-е ОУ в одном корпусе). Применив питание от 3, (3,7 телефонный аккумулятор) и 4,5 вольта пришёл к выводу, что можно обойтись без ключевого каскада на транзисторе. Таким образом, получилась одна микросхема, свч диод и 4-е светодиода. Учитывая условия сильных электромагнитных полей, в которых будет работать индикатор, использовал по всем входам, по цепям обратной связи и по питанию ОУ блокировочные и фильтрующие конденсаторы.
Регулировка.
Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.

Данный макет уже прошёл испытания.

Интервал от 3-х горящих светодиодов до полностью потушенных составляет около 20 дБ.

Питание от 3-х до 4,5 вольт. Дежурный ток от 0,65 до 0,75 мА. Рабочий ток при загорании 1-го светодиода составляет от 3 до 5 мА.

Этот индикатор СВЧ поля на микросхеме с 4-я ОУ собрал Николай.
Вот его схема.


Размеры и маркировка выводов микросхемы LMV824.


Монтаж индикатора СВЧ
на микросхеме LMV824.

Аналогичная по параметрам микросхема MC 33174D , включающая в себя четыре операционных усилителя, выполненная в дип-корпусе имеет больший размер, а поэтому более удобна для радиолюбительского монтажа. Электрическая конфигурация выводов полностью совпадает с микросхемой L МV 824. На микросхеме MC 33174D я сделал макет СВЧ индикатора на четыре светодиода. Между выводами 6 и 7 микросхемы добавлен резистор 9,1 кОм и параллельно ему конденсатор 0,1 мкФ. Седьмой вывод микросхемы, через резистор 680 Ом соединяется с 4-м светодиодом. Типоразмер деталей 06 03. Питание макета от литиевого элемента 3,3 – 4,2 вольта.

Индикатор на микросхеме МС33174.
Оборотная сторона.

Оригинальную конструкцию экономичного индикатора поля имеет сувенир сделанный в Китае. В этой недорогой игрушке есть: радиоприёмник, часы с датой, градусник и, наконец, индикатор поля. Бескорпусная, залитая микросхема потребляет ничтожно мало энергии, поскольку работает в режиме таймирования, на включение мобильного телефона реагирует с расстояния 1 метра, имитируя несколько секунд светодиодной индикацией аварийную сигнализацию передними фарами. Такие схемы выполняются на программируемых микропроцессорах с минимальным количеством деталей.

Дополнение к комментариям.

Селективные измерители поля для любительского диапазона 430 - 440 МГц
и для диапазона PMR (446 МГц).

Индикаторы СВЧ полей для любительских диапазонов от 430 до 446 МГц можно сделать селективными, добавив дополнительный контур L к Ск, где L к представляет собой виток провода диаметром 0,5 мм и длиной 3 см, а Ск - подстроечный конденсатор с номиналом 2 – 6 пФ. Сам виток провода, как вариант, можно изготовить в виде 3-х витковой катушки, с шагом намотанной на оправке диаметром 2 мм тем же проводом. К контуру необходимо подсоединить антенну в виде отрезка провода длиной 17 см через конденсатор связи 3.3 пФ.


Диапазон 430 - 446 МГц. Вместо витка катушка с шаговой намоткой.

Схема на диапазоны
430 - 446 МГц.

Монтаж на частотный диапазон
430 - 446 МГц.

Кстати, если серьёзно заниматься СВЧ измерением отдельных частот, то можно вместо контура использовать селективные фильтры на ПАВ-ах. В столичных радиомагазинах их ассортимент в настоящее время более чем достаточен. В схему необходимо будет добавить ВЧ трансформатор после фильтра.

Но это уже другая тема, не отвечающая названию поста.