Амитоз – это способ деления клеток. Амитоз

Митоз –mitos (греч. - нити) – непрямое деление клетки, универсальный способ деления эукариотических клеток.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом - ядерных структур, в которых сосредоточено более 90% генетического материала эукариотической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации; б) использование этой информации для создания и поддержания клеточной организации; в) регуляцию считывания наследственной информации; г) удвоение генетического материала; д) передачу его от материнской клетки дочерним.

Митоз – непрерывный процесс, который делится на фазы.

В митозе можно выделить четыре фазы . Главные события по отдельным фазам представлены ниже.

Фаза митоза Содержание изменений
Профаза (0,60 времени от всего митоза, 2n4c) Увеличивается объем ядра. Хромосомы спирализуются, становятся видимыми, укорачиваются, утолщаются, приобретают вид нитей. В цитоплазме уменьшается количество структур шероховатой сети. Резко сокращается число полисом. Центриоли клеточного центра расходятся к полюсам клетки, между ними микротрубочки образуют веретено деления. Ядрышко разрушается. Ядерная оболочка растворяется, хромосомы оказываются в цитоплазме
Метафаза (0,05 времени) Спирализация достигает максимума. Хромосомы выстраиваются в экваториальной плоскости клетки (метафазная пластинка). Микротрубочки веретена деления связаны с кинетохорами хромосом. Митотическое веретено полностью сформировано и состоит из нетей, соединяющих полюса с центромерами хромосом. Каждая хромосома продольно расщепляется на две хроматиды (дочерние хромосомы), соединенные в области кинетохора.
Анафаза (0,05 времени) Центромеры разъединяются, связь между хроматидами нарушается, и они в качестве самостоятельных хромосом перемещаются к полюсам клетки со скоростью 0,2-5 мкм/мин. Движение хромосом обеспечивается взаимодействием центромерных участков хромосом с микротрубочками веретена деления. По завершении движения на полюсах собирается два равноценных полных набора хромосом.
Телофаза (0,3 времени) Реконструируются интерфазные ядра дочерних клеток. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуются и становятся невидимы. Образуется ядерная оболочка, нити ахроматинового веретена распадаются. В ядре формируется ядрышко. Происходит деление цитоплазмы (цитотомия и цитокинез) и образование двух дочерних клеток. В клетках животных цитоплазма делится путем перетяжки, впячиванием цитоплазматической мембраны от краев к центру. В клетках растений - в центре образуется мембранная перегородка, которая растет по направлению к стенкам клетки. После образования поперечной цитоплазматической мембраны у растений образуется целлюлярная стенка.

Биологическое значение митоза: образование клеток с наследственной информацией, которая качественно и количественно идентична информации материнской клетки. Обеспечение постоянства кариотипа в ряду поколений клеток. Митоз служит клеточным механизмом процессов роста и развития организма, его регенерации и бесполого размножения. Таким образом, митоз является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.



Патология митоза

Нарушения той или иной фазы митоза приводят к патологическим изменениям клеток. Отклонение от нормального течения процесса спирализации может привести к набуханию и слипанию хромосом. Иногда наблюдается отрыв участка хромосомы, который, если он лишен центромеры, не участвует в анафазном перемещении к полюсам и теряется. Отставать при движении могут отдельные хроматиды, что приводит к образованию дочерних ядер с несбалансированными хромосомными наборами. Повреждения со стороны веретена деления приводят к задержке митоза в метафазе, рассеиванию хромосом. При изменении количества центриолей возникают многополюсные или асимметричные митозы. Нарушение цитотомии приводит к появлению дву- и многоядерных клеток.

На основе митотического цикла возник ряд механизмов, с помощью которых в том или ином органе количество генетического материала и, следовательно, интенсивность обмена могут быть увеличены при сохранении постоянства числа клеток.

Эндомитоз. Удвоение ДНК клетки не всегда сопровождается ее разделением на две. Поскольку механизм такого удвоения совпадает с предмитотической редупликацией ДНК и оно сопровождается кратным увеличением количества хромосом, это явление получило название эндомитоза. При воздействии на клетки веществами разрушающими микротрубочки веретена, деление прекращается, а хромосомы будут продолжать цикл своих превращений: реплицироваться, что приведет к поэтапному образованию полиплоидных клеток – 4n, 8n и т.д. Такой процесс преобразований иначе называется эндорепродукцией. С генетической точки зрения, эндомитоз - геномная соматическая мутация. Способность клеток к эндомитозу используют в селекции растений для получения клеток с кратным набором хромосом. Для этого применяют колхицин, винбластин, разрушающие нити ахроматинового веретена. Полиплоидные клетки (а затем и взрослые растения) отличаются большими размерами, вегетативные органы из таких клеток крупные, с большим запасом питательных веществ. У человека эндорепродукция имеет место в некоторых гепатоцитах и кардиомиоцитах.

Политения. При политении в S-периоде в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура. От митотических хромосом они отличаются большими размерами (длиннее в – 200 раз). Встречаются такие клетки в слюнных железах двукрылых насекомых, в макронуклеусах инфузорий. На политенных хромосомах видны вздутия, пуфы (места транскрипции) – выражение генной активности. Эти хромосомы – важнейший объект генетических исследований. Эндомитоз и политения приводят к образованию полиплоидных клеток, отличающихся кратным увеличением объема наследственного материала. В таких клетках в отличие от диплоидных гены повторены более чем два раза. Пропорционально увеличению числа генов растет масса клетки, что повышает ее функциональные возможности. В организме млекопитающих полиплоидизация с возрастом свойственна печеночным клеткам.

Аномалии митотического цикла . Митотический ритм, обычно адекватный потребности восстановления стареющих, погибших клеток, в условиях патологии может быть изменен. Замедление ритма наблюдается в стареющих или маловаскуляризированных тканях, увеличение ритма - в тканях при разных видах воспаления, гормональных воздействиях, в опухолях и др.

Аномалии развития митозов . Некоторые агрессивные агенты, действуя на фазу S, замедляют синтез и дупликацию ДНК. К ним относятся ионизирующая радиация, различные антиметаболиты (метатрексат, меркапто-6-пурин, флюоро-5-урацил, прокарбозин и др.). Их используют для противоопухолевой химиотерапии. Другие агрессивные агенты действуют на фазы митоза и препятствуют образованию ахроматического веретена. Они изменяют вязкость плазмы, не расщепляя нити хромосом. Такое цитофизиологическое изменение может повлечь за собой блокаду митоза в метафазу, а затем - острую смерть клетки, или митонекроз. Митонекрозы часто наблюдаются, в частности, в опухолевой ткани, в очагах некоторых воспалений с некрозом. Их можно вызвать при помощи подофиллина, который применяется при лечении злокачественных новообразований.

Аномалии морфологии митозов . При воспалении, действии ионизирующей радиации, химических агентов и особенно в злокачественных опухолях обнаруживаются морфологические аномалии митозов. Они связаны с тяжелыми метаболическими изменениями клеток и могут быть обозначены как «абортивные митозы». Примером такой аномалии служит митоз с анормальным числом и формой хромосом; трех-, четырех- и мультиполярные митозы.

Многоядерные клетки . Клетки, содержащие множество ядер, встречаются и в нормальном состоянии, например: остеокласты, мегакариоциты, синцитиотрофобласты. Но они поручаются часто и в условиях патологии - например: клетки Ланганса при туберкулезе, гигантские клетки инородных тел, множество опухолевых клеток. Цитоплазма таких клеток содержит гранулы или вакуоли, число ядер может колебаться от нескольких единиц до нескольких сотен, а объем отражён в названии - гигантские клетки. Происхождение их вариабельно: эпителиальные, мезенхимальные, гистиоцитарные. Механизм формирования гигантских многоядерных клеток различен. В одних случаях их образование обусловлено слиянием мононуклеарных клеток, в других оно осуществляется благодаря делению ядер без деления цитоплазмы. Считают также, что их образование может быть следствием некоторых аномалий митоза после облучения или введения цитостатиков, а также при злокачественном росте.

Амитоз

Прямое деление или амитоз – это деление клетки, у которой ядро находится в интерфазном состоянии. При этом не происходит конденсации хромосом и образования веретена деления. Формально амитоз должен приводить к появлению двух клеток, однако чаще всего он приводит к разделению ядра и появлению двух- или многоядерных клеток.

Начинается амитотическое деление с фрагментации ядрышек, вслед за этим делится перетяжкой ядро (или инвагинацией). Может быть множественное деление ядра, как правило, неравной величины (при патологических процессах). Многочисленные наблюдения показали, что амитоз встречается почти всегда в клетках отживающих, дегенерирующих и не способных дать в дальнейшем полноценные элементы. В норме амитотическое деление встречается в зародышевых оболочках животных, в фолликулярных клетках яичника, в гигантских клетках трофобластов. Положительное значение амитоз имеет в процессе регенерации тканей или органа (регенеративный амитоз). Амитоз в стареющих клетках сопровождается нарушениями биосинтетических процессов, включая репликацию, репарацию ДНК, а также транскрипцию и трансляцию. Изменяются физико-химические свойства белков хроматина ядер клеток, состав цитоплазмы, структура и функции органоидов, что влечет за собой функциональные нарушения на всех последующих уровнях – клеточном, тканевом, органном и организменном. По мере нарастания деструкции и угасания восстановления наступает естественная смерть клетки. Нередко амитоз встречается при воспалительных процессах и злокачественных новообразованиях (индуцированный амитоз).

Амитоз – прямое деление клеток. Амитоз встречается у эукариот достаточно редко. При амитозе ядро начинает делиться без видимых предварительных изменений. При этом не обеспечивается равномерное распределение генетического материала между дочерними клетками. Иногда при амитозе не происходит цитокинеза, то есть деления цитоплазмы, и тогда образуется двухъядерная клетка.

Рисунок – амитоз в клетках

Если же все-таки произошло деление цитоплазмы, то велика вероятность того, что обе дочерние клетки будут неполноценными. Амитоз чаще встречается в опухолевых или отмеряющих тканях.

При амитозе, в отличие от Митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки - цитотомии, как правило, не происходит; обычно амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Рисунок – Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Изучение амитоза осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно амитоз следует за Эндомитозом. В большинстве случаев при амитозе делится только ядро и возникает двуядерная клетка; при повторных амитозах. могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки - результат амитоза. (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы.

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Дву- и многоядерные клетки отличаются от одноядерных диплоидных большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток дву- и многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об амитозе как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму.

Во время амитоза клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём амитоза. Представления об амитозе как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать амитоз как внутриклеточную регулятивную реакцию.

Все случаи, когда происходит редупликация хромосом или репликация ДНК, но не наступает митоз, называются эндорепродукциями . Клетки становятся полиплоидными.

Как постоянный процесс эндорепродукция наблюдается в клетках печени, эпителия мочевыводящих путей млекопитающих. В случае эндомитоза хромосомы после редупликации становятся видны, но ядерная оболочка не разрушается.

Если делящиеся клетки на некоторое время охладить или обработать их каким-либо веществом, разрушающим микротрубочки веретена (например, колхицином), то деление клеток прекратится. При этом исчезнет веретено, а хромосомы без расхождения к полюсам будут продолжать цикл своих превращений: они начнут набухать, одеваться ядерной оболочкой. Так возникают за счет объединения всех неразошедшихся наборов хромосом крупные новые ядра. Они, естественно, будут содержать вначале 4п число хроматид и соответственно 4с количество ДНК. По определению, это уже не диплоидная, а тетраплоидная клетка. Такие полиплоидные клетки могут из стадии G 1 переходить в S-период и, если убрать колхицин, снова делиться митотическим путем, давая уже потомков с 4 n числом хромосом. В результате можно получить полиплоидные клеточные линии разной величины плоидности. Этот прием часто используется для получения полиплоидных растений.

Как оказалось, во многих органах и тканях нормальных диплоидных организмов животных и растений встречаются клетки с крупными ядрами, количество ДНК в которых кратно больше 2 n. При делении таких клеток видно, что количество хромосом у них также кратно увеличено по сравнению с обычными диплоидными клетками. Эти клетки являются результатом соматической полиплоидии. Часто это явление называют эндорепродукцией - появление клеток с увеличенным содержанием ДНК. Появление подобных клеток происходит в результате отсутствия в целом или незавершенности отдельных этапов митоза. Существует несколько точек в процессе митоза, блокада которых приведет к его остановке и к появлению полиплоидных клеток. Блок может наступить при переходе от С2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто происходит нарушение целостности веретена деления. Наконец, нарушения цитотомии также могут прекратить деление, что приведет к появлению двуядерных и полиплоидных клеток.

При естественной блокаде митоза в самом его начале, при переходе G2 - профазы, клетки приступают к следующему циклу репликации, который приведет к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме их больших размеров. При увеличении ядер в них не выявляются хромосомы митотического типа. Часто такой тип эндорепродукции без митотической конденсации хромосом встречается у беспозвоночных животных, обнаруживается он также и у позвоночных животных, и у растений. У беспозвоночных в результате блока митоза степень полиплоидии может достигать огромных значений. Так, в гигантских нейронах моллюска тритонии, ядра которых достигают величины до 1 мм (!), содержится более 2-105 гаплоидных наборов ДНК. Другим примером гигантской полиплоидной клетки, образовавшейся в результате редупликации ДНК без вступления клеток в митоз, может служить клетка шелкоотделительной железы тутового шелкопряда. Ее ядро имеет причудливую ветвистую форму и может содержать огромные количества ДНК. Гигантские клетки железы пищевода аскариды могут содержать до 100000с ДНК.

Особый случай эндорепродукции представляет собой увеличение плоидности путем политении. При политении в S-периоде при репликации ДИК новые дочерние хромосомы продолжают оставаться в деспирализованном состоянии, но располагаются друг около друга, не расходятся и не претерпевают митотическую конденсацию. В таком истинно интерфазном виде хромосомы снова вступают в следующий цикл репликации, снова удваиваются и не расходятся. Постепенно в результате репликации и нерасхождения хромосомных нитей образуется многонитчатая, политенная структура хромосомы интерфазного ядра. Последнее обстоятельство необходимо подчеркнуть, так как такие гигантские политенные хромосомы никогда не участвуют в митозе, более того - это истинно интерфазные хромосомы, участвующие в синтезе ДНК и РНК. От митотических хромосом они резко отличаются и по размерам: в несколько раз толще митотических хромосом из-за того, что состоят из пучка множественных неразошедшихся хроматид - по объему политенные хромосомы дрозофилы в 1000 раз "больше митотических. Они в 70-250 раз длиннее митотических из-за того, что в интерфазном состоянии хромосомы менее конденсированы (спирализованы), чем митотические хромосомы. Кроме того, у двукрылых их общее число в клетках равно гаплоидному из-за того, что при политенизации происходит объединение, конъюгация гомологичных хромосом. Так, у дрозофилы в диплоидной соматической клетке 8 хромосом, а в гигантской клетке слюнной железы - 4. Встречаются гигантские полиплоидные ядра с политенными хромосомами у некоторых личинок двукрылых насекомых в клетках слюнных желез, кишечника, мальпигиевых сосудов, жирового тела и т.д. Описаны политенные хромосомы в макронуклеусе инфузории стилонихии. Лучше всего этот тип эндорепродукции изучен у насекомых. Было подсчитано, что у дрозофилы в клетках слюнных желез может произойти до 6-8 циклов редупликации, что приведет к общей плоидности клетки, равной 1024. У некоторых хирономид (их личинку называют мотылем) плоидность в этих клетках достигает 8000-32000. В клетках политенные хромосомы начинают быть видны после достижения политении в 64-128 п, до этого такие ядра ничем, кроме размера, не отличаются от окружающих диплоидных ядер.

Отличаются политенные хромосомы и своим строением: они структурно неоднородны по длине, состоят из дисков, междисковых участков и пуфов. Рисунок расположения дисков строго характерен для каждой хромосомы и отличается даже у близких видов животных. Диски представляют собой участки конденсированного хроматина. Диски могут отличаться друг от друга по толщине. Общее их число у политенных хромосом хирономид достигает 1,5-2,5 тыс. У дрозофилы имеется около 5 тыс. дисков. Диски разделены междисковыми пространствами, состоящими, так же как и диски, из фибрилл хроматина, только более рыхла упакованных. На политенных хромосомах двукрылых часто видны вздутия, пуфы. Оказалось, что пуфы возникают на местах некоторых дисков за счет их деконденсации и разрыхления. В пуфах выявляется РНК, которая там же и синтезируется. Рисунок расположения и чередования дисков на политенных хромосомах постоянен и не зависит ни от органа, ни от возраста животного. Это является хорошей иллюстрацией одинаковости качества генетической информации в каждой клетке организма. Пуфы являются временными образованиями на хромосомах, и в процессе развития организма существует определенная последовательность в их появлении и исчезновении на генетически различных участках хромосомы. Эта последовательность различна для разных тканей. Сейчас доказано, что образование пуфов на политенных хромосомах - это выражение генной активности: в пуфах синтезируются РНК, необходимые для проведения белковых синтезов на разных этапах развития насекомого. В естественных условиях у двукрылых особенно активны в отношении синтеза РНК два самых крупных пуфа, так называемые кольца Бальбиани, который описал их 100 лет тому назад.

В других случаях эндорепродукции полиплоидные клетки возникают в результате нарушений аппарата деления - веретена: при этом происходит митотическая конденсация хромосом. Такое явление носит название эндомитоз, потому что конденсация хромосом и их изменения происходят внутри ядра, без исчезновения ядерной оболочки. Впервые явление эндомитоза было хорошо изучено в клетках: различных тканей водяного клопа - геррии. В начале эндомитоза хромосомы конденсируются, благодаря чему становятся хорошо различимы внутри ядра, затем хроматиды обособляются, вытягиваются. Эти стадии по состоянию хромосом могут соответствовать профазе и метафазе обычного митоза. Затем хромосомы в таких ядрах исчезают, и ядро принимает вид обычного интерфазного ядра, но размер его увеличивается в соответствии с увеличением плоидности. После очередной редупликации ДНК такой цикл эндомитоза повторяется. В результате могут возникнуть полиплоидные (32 п) и даже гигантские ядра. Сходный тип эндомитоза описан при развитии макронуклеусов у некоторых инфузорий, у целого ряда растений.

Результат эндорепродукции : полиплоидия и увеличение размеров клетки.

Значение эндорепродукции : не прерывается деятельность клетки. Так, например, деление нервных клеток привело бы к временному выключению их функций; эндорепродукция позволяет без перерыва в функционировании нарастить клеточную массу и тем самым увеличить объем работы, выполняемый одной клеткой.

Ознакомление с информацией, содержащейся в этой статье, позволит читателю узнать об одном из способов клеточного деления - амитозе. Мы выясним особенности протекания данного процесса, рассмотрим отличия от других видов деления и многое другое.

Что такое амитоз

Амитоз - это клеточное деление прямого типа. Данный процесс происходит благодаря обычному на две части. Однако он может упускать фазу формирования веретена для деления. А перешнуровка происходит без конденсации хроматинов. Амитоз - это процесс, свойственный клеткам животных и растений, а также простейшим организмам.

Из истории и исследований

Роберт Ремак в 1841 году дал описание процесса амитоза впервые, однако сам термин возник гораздо позже. Уже в 1882-м гистолог и биолог немецкого происхождения Вальтер Флемминг предложил современное название самого процесса. Амитоз клетки в природе является относительно редким явлением, но зачастую он может происходить, так как является необходимым.

Особенности процесса

Как происходит деление клеток? Амитоз чаще всего возникает в клетках, имеющих пониженную митотическую активность. Таким образом, множество клеток, которые должны погибнуть в результате старости либо изменений патологического характера, могут оттянуть свою кончину на какое-то время.

Амитоз - это процесс, в котором состояние ядра в период интерфазы сохраняет свои морфологические признаки: ядрышко отлично видно, как и его оболочку, ДНК не реплицируется, хроматин - белковый, ДНК и РНК не спиралезируются, а выявление хромосом в ядре клетки эукариотов отсутствует.

Существует непрямое деление клетки - митоз. Амитоз, в отличие от него, позволяет клетке после деления сохранить свою активность как функционирующего элемента. Веретено деления (структура, предназначенная для хромосомной сегрегации) при амитозе не формируется, однако ядро все равно делится, и следствием данного процесса является случайное распределение наследственной информации. Отсутствие цитокинетического процесса в результате приводит к воспроизведению клеток с двумя ядрами, которые в будущем не смогут вступать в типичный цикл митоза. Многократное повторение амитоза может привести к образованию клеток с множеством ядер.

Современное положение

Амитоз как понятие стал возникать во множестве учебников еще в 80-х годах двадцатого века. На сегодняшний день существуют предположения о том, что все процессы, которые ранее подкладывали под это понятие, на самом деле являются неверно интерпретированными результатами исследований на плохо подготовленных микропрепаратах. Ученые полагают, что явление клеточного деления, сопровождающееся разрушением последних, могло привести к тем же неверно понятым и истолкованным данным. Однако некоторые процессы деления эукариотических клеток нельзя отнести ни к митозу, ни к мейозу. Ярким примером и подтверждением тому служит процесс деления макронуклеуса (ядро клетки инфузории, крупное по размерам), во время которого сегрегация некоторых участков хромосом происходит, несмотря на то что веретено для деления не образуется.

Чем же обусловливается осложнение изучения процессов амитоза? Дело в том, что это явление сложно определить по его морфологическим признакам. Такое определение является ненадежным. Неспособность четко определить по знакам морфологии процесс амитоза основывается на том, что не всякая ядерная перетяжка является признаком самого амитоза. И даже гантелевидная ее форма, которая четко выражается в ядре, может относиться лишь к переходящему типу. Также перетяжки ядра могут быть следствием ошибок в явлении предшествующего деления митозом. Чаще всего амитоз происходит сразу после эндомитоза (способ удвоения хромосомного числа без деления как клетки, так и ее ядра). Обычно процесс амитоза приводит к удвоению Повторение данного явления создает клетку с множеством ядер. Таким образом, амитоз создает клетки с хромосомным набором полиплоидного типа.

Заключение

Подведя итоги, можно сказать, что амитоз - это процесс, во время которого клетка делится прямым типом, то есть происходит деление ядра на две части. Сам процесс не способен обеспечить клеточное деление на равные, идентичные половины. Это касается и информации о наследственности клетки.

Этот процесс имеет ряд резких отличий от поэтапного деления путем митоза. Основным различием в процессах амитоза и митоза является отсутствие разрушения оболочки ядра и ядрышка при амитозе, а также протекание процесса без образования веретена, обеспечивающего деление информации. Цитотомия в большинстве случаев не делится.

В настоящее время нет исследований современной эпохи, которые бы могли четко выделить амитоз как форму дегенерации клеток. Это же относится и к восприятию амитоза как способа клеточного деления из-за наличия очень малого количества деления целого клеточного тела. Потому амитоз, возможно, лучше относить к регулятивному процессу, протекающему внутри клеток.

Амитоз иногда ещё называют простым делением.

Определение 1

Амитоз – прямое деление клетки путём перетяжки или инвагинации. При амитозе не происходит конденсация хромосом и не образуется аппарат деления.

Амитоз не обеспечивает равномерного распределения хромосом между дочерними клетками.

Обычно амитоз свойствен стареющим клеткам.

Во время амитоза ядро клетки сохраняет строение интерфазного ядра, а сложной перестройки всей клетки, спирализации хромосом, как во время митоза, не происходит.

Нет никаких доказательств равномерного распределения ДНК между двумя клетками при амитотическом делении, потому считают, что ДНК при таком делении может распределятся между двумя клетками неравномерно.

Амитоз встречается в природе достаточно редко, в основном у одноклеточных организмов и у некоторых клеток многоклеточных животных и растений.

Типы амитоза

Различают несколько форм амитоза:

  • равномерный , когда образуются два равных ядра;
  • неравномерный – образуются неодинаковые ядра;
  • фрагментация - ядро распадается на множество мелких ядер, одинаковой или нет величины.

Первые два типа деления вызывают образование двух клеток из одной.

В клетках хряща, рыхлой соединительной и некоторых других тканях происходит деление ядрышек с последующим делением ядра путём перетяжки. У двухъядерной клетки появляется кольцевая перетяжка цитоплазмы, которая при углублении вызывает полное деление клетки на две.

В процессе амитоза в ядре происходит деление ядрышек с последующим делением ядра перетяжкой, цитоплазма так же делится перетяжкой.

Амитоз-фрагментация вызывает образование многоядерных клеток.

В некоторых клетках эпителия, печени наблюдается процесс деления ядрышек в ядре, после чего всё ядро перешнуровывается кольцевой перетяжкой. Процесс этот заканчивается образованием двух ядер. Такая двухъядерная или многоядерная клетка уже не делится митотически, через некоторое время она стареет или гибнет.

Замечание 1

Таким образом, амитоз – это деление, которое происходит без спирализации хромосом и без образования веретена деления. Так же неизвестно синтезируется ли перед началом амитоза синтез ДНК и как происходит распределение ДНК между дочерними ядрами. Происходит ли предыдущий синтез ДНК перед началом амитоза и как она распределяется между дочерними ядрами – неизвестно. При делении определённых клеток иногда митоз чередуется с амитозом.

Биологическое значение амитоза

Некоторые учёные считают этот способ деления клеток примитивным, другие относят его к вторичным явлениям.

Амитоз по сравнению с митозом встречается значительно реже у многоклеточных организмов и может быть отнесён к неполноценному способу деления клеток, утративших способность к делению.

Биологическое значение процессов амитотического деления:

  • процессы, обеспечивающие равномерное распределение материала каждой хромосомы между двумя клетками, отсутствуют;
  • образование многоядерных клеток или увеличение количества клеток.

Определение 2

Амитоз – это своеобразный тип деления, который иногда можно наблюдать при нормальной жизнедеятельности клетки, а в большинстве случаев, когда функции нарушаются: влияние излучения или действие других вредных факторов.

Амитоз свойствен высокодифференцированным клеткам. В сравнении с митозом он встречается реже и играет второстепенную роль в клеточном делении большинства живых организмов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Амитоз: его виды и значение

План

Введение

1. Амитоз: понятие и сущность

2. Виды амитоза

Заключение

Список литературы

Введение

Термин «клетка» впервые употребил Роберт Гук в 1665 году при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы. В 1838--1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории -- самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц -- клеток, каждая из которых обладает всеми свойствами живого.

Важнейшим дополнением клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

В 1870-х годах были открыты два способа деления клетки эукариот, впоследствии названные митоз и мейоз. Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом хромосом также удваивается. но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом -- кариотип -- одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитолоогические открытия легли в основу хромосомной теории наследственности.

1. Амитоз: понятие и сущность

Амитоз (или прямое деление клетки), происходит в соматических клетках эукариот реже, чем митоз. Впервые он описан немецким биологом Р. Ремаком в 1841г., термин предложен гистологом В. Флеммингом позднее - в 1882г. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует.

Рис. 1 Амитоз

Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Это понятие ещё фигурировало в некоторых учебниках до 1980-х гг. В настоящее время считается, что все явления, относимые к амитозу -- результат неверной интерпретации недостаточно качественно приготовленных микроскопических препаратов, или интерпретации как деления клетки явлений, сопровождающих разрушение клеток или иные патологические процессы. В то же время некоторые варианты деления ядер эукариот нельзя назвать митозом или мейозом. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретена происходит сегрегация коротких фрагментов хромосом.

Амитоз - (от греч. а -- отриц. част, и mitos -- нить; син.: прямое деление, фрагментация) . Так называют особую форму клеточного деления, отличающуюся от обычного митоза (деления с волокнистым метаморфозом ядра) своей простотой. По определению Flemming"a, установившего эту форму (1879 г.), «амитоз есть такая форма деления клетки и ядра, при которой отсутствуют образование веретена и правильно оформленных хромосом и перемещение последних в определенном порядке».

Ядро, не изменяя своего характера, прямо или после предварительного разделения ядрышка, распадается на две части путем перешнурования или образования односторонней складки. За делением ядра в некоторых случаях делится и тело клетки, также путем перешнурования и расщепления. Иногда ядро распадается на несколько частей равной или неравной величины. А. был описан во всех органах и тканях как у позвоночных, так и беспозвоночных; одно время думали, что простейшие делятся исключительно прямым путем, но ошибочность этого взгляда вскоре была доказана. Главным признаком для констатирования А. служило нахождение двуядерных клеток, а на ряду с ними--и клеток с большими ядрами, обнаруживающими складки и перехваты; амитотическое деление клеточного тела наблюдалось чрезвычайно редко, о нем приходилось заключать на основании косвенных соображений.--

По вопросу о сущности и значении А. были высказаны различные воззрения:

1. А. есть первичный и простейший способ деления (Strassburger, Waldeyer, Car-поу); он происходит, напр., при заживлении ран, когда клетки «не успевают» делиться митозом (Balbiani, Henneguy), наблюдается иногда у зародышей (Максимов). фрагментация интерфазный амитоз клетка

2. А. есть ненормальный способ деления, происходит при условиях патологических, в отживающих тканях, иногда в клетках при усиленной секреции и ассимиляции и знаменует собой конец делений; клетки после А. не могут уже делиться ми-тотически, поэтому А. не имеет регенеративного значения (Flemming, Ziegler, Rath).

3. А. не представляет собой способа размножения клетки; в одной части случаев А. происходит простое распадение ядра под влиянием физико-механических моментов (давление, пережимание клетки чем-либо, образование и углубление складок вследствие изменения осмотического давления ядра), в других случаях, описанных как А., имеет место абортивный (не дошедший до конца) митоз; смотря по стадии, на к-рой обрывается митоз, получаются клетки с большим перешнурованным ядром или двуядерные (Карпов)."-- За последние два десятилетия вопрос об А. дебатируется реже, при чем высказываются все три взгляда: т. о., единства во взглядах на А. не достигнуто.

При амитозе веретено деления не образуется и хромосомы в световом микроскопе неразличимы. Такое деление встречается у одноклеточных организмов (например, так делятся большие полиплоидные ядра инфузорий), а также в некоторых высокоспециализированных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель клетках растений и животных либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Амитоз можно наблюдать в тканях растущего клубня картофеля, эндосперме семян, стенках завязи пестика и паренхиме черешков листьев. У животных и человека такой тип деления характерен для клеток печени, хрящей, роговицы глаза.

При амитозе часто наблюдается только деление ядра: в этом случае могут возникнуть двух- и многоядерные клетки. Если же за делением ядра следует деление цитоплазмы, то распределение клеточных компонентов, как и ДНК, осуществляется произвольно.

Амитоз в отличие от митоза является самым экономичным способом деления, так как энергетические затраты при этом весьма незначительны.

При Амитоз, в отличие от митоза, или непрямого деления ядра, ядерная оболочка и ядрышки не разрушаются, веретено деления в ядре не образуется, хромосомы остаются в рабочем (деспирализованном) состоянии, ядро или перешнуровывается или в нём, внешне неизменном, появляется перегородка; деления тела клетки -- цитотомии, как правило, не происходит (рис.); обычно Амитоз не обеспечивает равномерного деления ядра и отдельных его компонентов.

Рис 2 Амитотическое деление ядер соединительнотканных клеток кролика в культуре ткани.

Изучение Амитоз осложняется ненадёжностью его определения по морфологическим признакам, поскольку не каждая перетяжка ядра означает Амитоз; даже выраженные «гантелевидные» перетяжки ядра могут быть преходящими; ядерные перетяжки могут быть и результатом неправильного предшествующего митоза (псевдоамитоз). Обычно Амитоз следует за эндомитозом. В большинстве случаев при Амитоз делится только ядро и возникает двуядерная клетка; при повторных Амитоз могут образовываться многоядерные клетки. Очень многие двуядерные и многоядерные клетки -- результат Амитоз (некоторое число двуядерных клеток образуется при митотическом делении ядра без деления тела клетки); они содержат (суммарно) полиплоидные хромосомные наборы (см. Полиплоидия).

У млекопитающих известны ткани как с одноядерными и двуядерными полиплоидными клетками (клетки печени, поджелудочной и слюнных желёз, нервной системы, эпителия мочевого пузыря, эпидермиса), так и только с двуядерными полиплоидными клетками (клетки мезотелия, соединительные ткани). Двуи многоядерные клетки отличаются от одноядерных диплоидных (см. Диплоид) большими размерами, более интенсивной синтетической деятельностью, увеличенным количеством различных структурных образований, в том числе хромосом. От одноядерных полиплоидных клеток двуи многоядерные отличаются главным образом большей поверхностью ядра. На этом основано представление об Амитоз как способе нормализации ядерно-плазменных отношений в полиплоидных клетках путём увеличения отношения поверхности ядра к его объёму. Во время Амитоз клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Во многих случаях Амитоз и двуядерность сопутствуют компенсаторным процессам, протекающим в тканях (например, при функциональных перегрузках, голодании, после отравления или денервации). Обычно Амитоз наблюдается в тканях со сниженной митотической активностью. Этим, по-видимому, объясняется увеличение по мере старения организма числа двуядерных клеток, образующихся путём Амитоз Представления об Амитоз как форме дегенерации клеток не подкрепляются современными исследованиями. Несостоятелен и взгляд на Амитоз как на форму деления клеток; имеются лишь единичные наблюдения амитотического деления тела клетки, а не только её ядра. Правильнее рассматривать Амитоз как внутриклеточную регулятивную реакцию.

2. Виды амитоза

Амитоз -- прямое деление клетки (ядра). При этом происходит перешнуровывание или фрагментация ядра без выявления хромосом и образования веретена деления. Одной из форм амитоза может быть сегрегация геномов -- множественное перешнуровывание полиплоидного ядра с образованием мелких дочерних ядер.

Сегрегация - процесс расхождения хромосом в митозе или мейозе. Сегрегация обеспечивает постоянство числа хромосом в клеточных делениях.

Сложность организации генома: «молчащая» ДНК - Значительная часть нуклеотидных последовательностей у эукариот реплицируется, но не транскрибируется вообще, мозаичная структура генов (интроны - участок ДНК, который является частью гена, но не содержит информации о последовательности аминокислот белка, экзоны - это последовательность ДНК, которая представлена в зрелой РНК), мобильные генетические элементы -- последовательности ДНК, которые могут перемещаться внутри генома.

Как правило, амитоз встречается в полиплоидных, отживающих или патологически измененных клетках и ведет к образованию многоядерных клеток. В последние годы факт существования амитоза как способа нормальной репродукции клеток отрицается.

В тканях, завершающих свою жизнедеятельность, или в условиях патологии можно наблюдать прямое деление клеток без выявления хромосом в ядре - амитоз. Он характеризуется изменением формы и числа ядрышек с последующей перешнуровкой ядра. Образующиеся при этом двуядерные клетки могут подвергнуться цитотомии.

По физиологическому значению различают три вида амитотического деления:

Амитоз генеративный;

Дегенеративный;

Реактивный.

Генеративный амитоз - полноценное деление клеток, дочерние клетки которых способны в последующем к митотическому делению и к характерному для них нормальному функционированию.

Реактивный амитоз вызывается какими-либо неадекватными воздействиями на организм.

Дегенеративный амитоз - деление, связанное с процессами дегенерации и гибели клеток.

Заключение

Способность к делению - важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одно­клеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедея­тельности организма. Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

Деление клетки приводит к образованию из одной материнской клетки двух или многих дочерних. Если деление ядра материнской клетки сразу же сопровождается делением ее цитоплазмы, появляются две дочерние клетки. Но бывает и так: ядро многократно делится, а уже затем вокруг каждого из них обособляется часть цитоплазмы материнской клетки. В этом случае из одной исходной клетки сразу формируется несколько дочерних клеток.

Амитоз , или прямое деление, - это деление интерфазного ядра путем перетяжки без образования веретена деления (хромосомы в световом микроскопе вообще неразличимы). Такое деление встречается у одноклеточных организмов (например, амитозом делятся полиплоидные большие ядра инфузорий), а также в некоторых высокоспециализированных клетках растений и животных с ослабленной физиологической активностью, дегенерирующих, обреченных на гибель, либо при различных патологических процессах, таких как злокачественный рост, воспаление и т. п.

Список литературы

1. Биология / Под ред. Чебышева. Н.В. - М.: ГОУ ВУНМЦ, 2005.

2. Врожденные пороки развития // Серия учебной литературы «Образование медсестер», модуль 10. - М.: Гэотар-мед, 2002.

3.Медицинская генетика / Под ред. Бочкова Н.П. - М.: Мастерство, 2001.

4.Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. - Минск: Высшая школа, 1999.

5.Пособие по биологии для довузовского обучения иностранных учащихся / Под ред. Чернышова В.Н., Елизаровой Л.Ю., Шведовой Л.П.- М.: ГОУ ВУНМЦ МЗ РФ, 2004.

6.Ярыгин В.Н., Волков И.Н. и др. Биология. - М.: Владос, 2001.

Размещено на Allbest.ru

...

Подобные документы

    Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация , добавлен 25.10.2011

    Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.

    презентация , добавлен 09.10.2013

    Изобретение Захарием Янсеном примитивного микроскопа. Исследование срезов растительных и животных тканей Робертом Гуком. Обнаружение Карлом Максимовичем Бэром яйцеклетки млекопитающих. Создание клеточной теории. Процесс деления клетки. Роль ядра клетки.

    презентация , добавлен 28.11.2013

    Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция , добавлен 27.07.2013

    Последовательность событий в процессе деления новой клетки. Накопление критической клеточной массы, репликация ДНК, построение новой клеточной оболочки. Характер взаимосвязи процессов клеточного деления. Управление скоростью роста микроорганизмов.

    реферат , добавлен 26.07.2009

    Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.

    презентация , добавлен 19.10.2013

    Исследование основных видов размножения: воспроизведения себе подобных, обеспечивающего непрерывность жизни. Понятие митоза – такого деления клеточного ядра, при котором образуется два дочерних ядра с набором хромосом, идентичных родительской клетки.

    презентация , добавлен 19.01.2011

    Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.

    презентация , добавлен 12.09.2014

    История и основные этапы исследования клетки, ее структуры и компонентов. Содержание и значение клеточной теории, выдающиеся ученые, внесшие свой вклад в ее разработку. Симбиотическая теория (хлоропласты и митохондрии). Зарождения эукариотической клетки.

    презентация , добавлен 20.04.2016

    Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.