Световая фаза фотосинтеза. Темновая фаза фотосинтеза

Объяснение такого объемного материала, каким является фотосинтез, лучше проводить на двух спаренных уроках – тогда не теряется целостность восприятия темы. Урок необходимо начать с истории изучения фотосинтеза, строения хлоропластов и проведения лабораторной работы по изучению хлоропластов листа. После этого необходимо перейти к изучению световой и темновой фаз фотосинтеза. При объяснении реакций, происходящих в этих фазах, необходимо составить общую схему:

По ходу объяснения надо нарисовать схему световой фазы фотосинтеза .

1. Поглощение кванта света молекулой хлорофилла, которая находится в мембранах тилакоидов гран, приводит к потере ею одного электрона и переводит ее в возбужденное состояние. Электроны переносятся по электронтранспортной цепи, что приводит к восстановлению НАДФ + до НАДФ Н.

2. Место вышедших электронов в молекулах хлорофилла занимают электроны молекул воды – так вода под действием света подвергается разложению (фотолизу). Образовавшиеся гидроксилы ОН– становятся радикалами и объединяются в реакции 4 ОН – → 2 H 2 O +O 2 , приводящей к выделению в атмосферу свободного кислорода.

3. Ионы водорода Н+ не проникают через мембрану тилакоида и накапливаются внутри, заряжая его положительно, что приводит к увеличению разности электрических потенциалов (РЭП) на мембране тилакоида.

4. При достижении критической РЭП протоны устремляются по протонному каналу наружу. Этот поток положительно заряженных частиц используется для получения химической энергии с помощью специального ферментного комплекса. Образовавшиеся в результате молекулы АТФ переходят в строму, где участвуют в реакциях фиксации углерода.

5. Ионы водорода, вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ + .

Спонсор публикации статьи группа компаний "Арис". Производство, продажа и аренда строительных лесов (рамные фасадные ЛРСП, рамные высотные А-48 и др.) и вышек-тур (ПСРВ "Арис", ПСРВ "Арис компакт" и "Арис-дачная", помосты). Хомуты для строительных лесов, строительные ограждения, колесные опоры для вышек. Узнать подробнее о компании, посмотреть каталог продукции и цены, контакты Вы сможете на сайте, который располагается по адресу: http://www.scaffolder.ru/.

После рассмотрения данного вопроса, проанализировав его еще раз по составленной схеме, предлагаем учащимся заполнить таблицу.

Таблица. Реакции световой и темновой фаз фотосинтеза

После заполнения первой части таблицы можно перейти к разбору темновой фазы фотосинтеза .

В строме хлоропласта постоянно присутствуют пентозы – углеводы, представляющие собой пятиуглеродные соединения, которые образуются в цикле Кальвина (цикл фиксации углекислого газа).

1. К пентозе присоединяется углекислый газ, образуется неустойчивое шестиуглеродное соединение, которое распадается на две молекулы 3-фосфоглицериновой кислоты (ФГК).

2. Молекулы ФГК принимают от АТФ по одной фосфатной группе и обогащаются энергией.

3. Каждая из ФГК присоединяет по одному атому водорода от двух переносчиков, превращаясь в триозу. Триозы, объединяясь, образуют глюкозу, а затем крахмал.

4. Молекулы триозы, объединяясь в разных сочетаниях, образуют пентозы и вновь включаются в цикл.

Суммарная реакция фотосинтеза:

Схема. Процесс фотосинтеза

Тест

1. Фотосинтез осуществляется в органеллах:

а) митохондрии;
б) рибосомы;
в) хлоропласты;
г) хромопласты.

2. Пигмент хлорофилл сосредоточен в:

а) оболочке хлоропласта;
б) строме;
в) гранах.

3. Хлорофилл поглощает свет в области спектра:

а) красной;
б) зеленой;
в) фиолетовой;
г) во всей области.

4. Свободный кислород при фотосинтезе выделяется при расщеплении:

а) углекислого газа;
б) АТФ;
в) НАДФ;
г) воды.

5. Свободный кислород образуется в:

а) темновой фазе;
б) световой фазе.

6. В световой фазе фотосинтеза АТФ:

а) синтезируется;
б) расщепляется.

7. В хлоропласте первичный углевод образуется в:

а) световой фазе;
б) темновой фазе.

8. НАДФ в хлоропласте необходим:

1) как ловушка для электронов;
2) в качестве фермента для образования крахмала;
3) как составная часть мембраны хлоропласта;
4) в качестве фермента для фотолиза воды.

9. Фотолиз воды – это:

1) накопление воды под действием света;
2) диссоциация воды на ионы под действием света;
3) выделение водяных паров через устьица;
4) нагнетание воды в листья под действием света.

10. Под воздействием квантов света:

1) хлорофилл превращается в НАДФ;
2) электрон покидает молекулу хлорофилла;
3) хлоропласт увеличивается в объеме;
4) хлорофилл превращается в АТФ.

ЛИТЕРАТУРА

Богданова Т.П., Солодова Е.А. Биология. Справочник для старшеклассников и поступающих в вузы. – М.: ООО «АСТ-Пресс школа», 2007.

Как объяснить такой сложный процесс, как фотосинтез, кратко и понятно? Растения являются единственными живыми организмами, которые могут производить свои собственные продукты питания. Как они это делают? Для роста и получают все необходимые вещества из окружающей среды: углекислый газ - из воздуха, воду и - из почвы. Также они нуждаются в энергии, которую получают из солнечных лучей. Эта энергия запускает определенные химические реакции, во время которых углекислый газ и вода превращаются в глюкозу (питание) и и есть фотосинтез. Кратко и понятно суть процесса можно объяснить даже детям школьного возраста.

"Вместе со светом"

Слово "фотосинтез" происходит от двух греческих слов - "фото" и "синтез", сочетание который в переводе означает "вместе со светом". В солнечная энергия преобразуется в химическую энергию. Химическое уравнение фотосинтеза:

6CO 2 + 12H 2 O + свет = С 6 Н 12 О 6 + 6O 2 + 6Н 2 О.

Это означает, что 6 молекул углекислого газа и двенадцать молекул воды используются (вместе с солнечным светом) для производства глюкозы, в итоге образуются шесть молекул кислорода и шесть молекул воды. Если изобразить это в виде словесного уравнения, то получится следующее:

Вода + солнце => глюкоза + кислород + вода.

Солнце является очень мощным источником энергии. Люди всегда стараются использовать его для выработки электричества, утепления домов, нагревания воды и так далее. Растения "придумали", как использовать солнечную энергию еще миллионы лет назад, потому что это было нужно для их выживания. Фотосинтез кратко и понятно можно объяснить таким образом: растения используют световую энергию солнца и преобразуют ее в химическую энергию, результатом которой является сахар (глюкоза), избыток которого хранится в виде крахмала в листьях, корнях, стеблях и семенах растения. Энергия солнца передается растениям, а также животным, которые эти растения едят. Когда растение нуждается в питательных веществах для роста и других жизненных процессов, эти запасы оказываются очень полезными.

Как растения поглощают энергию солнца?

Рассказывая про фотосинтез кратко и понятно, стоит затронуть вопрос о том, каким образом растениям удается поглощать солнечную энергию. Это происходит благодаря особой структуре листьев, включающей в себя зеленые клетки - хлоропласты, которые содержат специальное вещество под названием хлорофилл. Это который придает листьям зеленый цвет и отвечает за поглощение энергии солнечного света.


Почему большинство листьев широкие и плоские?

Фотосинтез происходит в листьях растений. Удивительным фактом является то, что растения очень хорошо приспособлены для улавливания солнечного света и поглощения углекислого газа. Благодаря широкой поверхности будет захватываться гораздо больше света. Именно по этой причине солнечные панели, которые иногда устанавливают на крышах домов, также широкие и плоские. Чем больше поверхность, тем лучше происходит поглощение.

Что еще важно для растений?

Как и люди, растения также нуждаются в полезных и питательных веществах, чтобы сохранить здоровье, расти и выполнять хорошо свои жизненные функции. Они получают растворенные в воде минеральные вещества из почвы через корни. Если в почве не хватает минеральных питательных веществ, растение не будет развиваться нормально. Фермеры часто проверяют почву для того, чтобы убедиться, что в ней имеется достаточное количество питательных веществ для роста культур. В противном случае прибегают к использованию удобрений, содержащих основные минералы для питания и роста растений.

Почему фотосинтез так важен?

Объясняя фотосинтез кратко и понятно для детей, стоит рассказать, что этот процесс является одной из наиболее важных химических реакций в мире. Какие существуют причины для такого громкого утверждения? Во-первых, фотосинтез кормит растения, которые, в свою очередь, кормят всех остальных живых существ на планете, включая животных и человека. Во-вторых, в результате фотосинтеза в атмосферу выделяется необходимый для дыхания кислород. Все живые существа вдыхают кислород и выдыхают углекислый газ. К счастью, растения делают все наоборот, поэтому они очень важны для человека и животных, так как дают им возможность дышать.

Удивительный процесс

Растения, оказывается, тоже умеют дышать, но, в отличие от людей и животных, они поглощают из воздуха углекислый газ, а не кислород. Растения тоже пьют. Вот почему нужно поливать их, иначе они умрут. При помощи корневой системы вода и питательные вещества транспортируются во все части растительного организма, а через маленькие отверстия на листиках происходит поглощение углекислого газа. Пусковым механизмом для запуска химической реакции является солнечный свет. Все полученные продукты обмена используются растениями для питания, кислород выделяется в атмосферу. Вот так можно объяснить кратко и понятно, как происходит процесс фотосинтеза.

Фотосинтез: световая и темновая фазы фотосинтеза

Рассматриваемый процесс состоит из двух основных частей. Существуют две фазы фотосинтеза (описание и таблица - далее по тексту). Первая называется световой фазой. Она происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента АТФ-синтетазы. Что еще скрывает фотосинтез? Световая и сменяют друг друга по мере наступления дня и ночи (циклы Кальвина). Во время темновой фазы происходит производство той самой глюкозы, пищи для растений. Этот процесс называют еще независимой от света реакцией.

Световая фаза Темновая фаза

1. Реакции, происходящие в хлоропластах, возможны только при наличии света. В этих реакциях энергия света преобразуется в химическую энергию

2. Хлорофилл и другие пигменты поглощают энергию от солнечного света. Эта энергия передается на фотосистемы, ответственные за фотосинтез

3. Вода используется для электронов и ионов водорода, а также участвует в производстве кислорода

4. Электроны и ионы водорода используются для создания АТФ (молекула накопления энергии), которая нужна в следующей фазе фотосинтеза

1. Реакции внесветового цикла протекают в строме хлоропластов

2. Углекислый газ и энергия от АТФ используются в виде глюкозы

Заключение

Из всего вышесказанного можно сделать следующие выводы:

  • Фотосинтез - это процесс, который позволяет получать энергию от солнца.
  • Световая энергия солнца преобразуется в химическую энергию хлорофиллом.
  • Хлорофилл придает растениям зеленый цвет.
  • Фотосинтез происходит в хлоропластах клеток листьев растений.
  • Углекислый газ и вода необходимы для фотосинтеза.
  • Углекислый газ поступает в растение через крошечные отверстия, устьица, через них же выходит кислород.
  • Вода впитывается в растение через его корни.
  • Без фотосинтеза в мире не было бы еды.

С использованием световой энергии или без нее. Он характерен для растений. Рассмотрим далее, что собой представляют темновая и световая фаза фотосинтеза.

Общие сведения

Органом фотосинтеза у высших растений является лист. В качестве органоидов выступают хлоропласты. В мембранах их тилакоидов присутствуют фотосинтетические пигменты. Ими являются каротиноиды и хлорофиллы. Последние существуют в нескольких видах (а, с, b, d). Главным из них считается а-хлорофилл. В его молекуле выделяется порфириновая "головка" с атомом магния, расположенным в центре, а также фитольный "хвост". Первый элемент представлен в виде плоской структуры. "Головка" является гидрофильной, поэтому располагается на той части мембраны, которая направлена к водной среде. Фитольный "хвост" является гидрофобным. За счет этого он удерживает хлорофилльную молекулу в мембране. Хлорофиллами поглощается сине-фиолетовый и красный свет. Они также отражают зеленый, за счет чего растения имеют характерный для них цвет. В мембранах тилактоидов молекулы хлорофилла организованы в фотосистемы. Для синезеленых водорослей и растений характерны системы 1 и 2. Фотосинтезирующие бактерии имеют только первую. Вторая система может разлагать Н 2 О, выделять кислород.

Световая фаза фотосинтеза

Процессы, происходящие в растениях, отличаются сложностью и многоступенчатостью. В частности, выделяют две группы реакций. Ими являются темновая и световая фаза фотосинтеза. Последняя протекает при участии фермента АТФ, белков, переносящих электроны, и хлорофилла. Световая фаза фотосинтеза происходит в мембранах тилактоидов. Хлорофилльные электроны возбуждаются и покидают молекулу. После этого они попадают на внешнюю поверхность мембраны тилактоида. Она, в свою очередь, заряжается отрицательно. После окисления начинается восстановление молекул хлорофилла. Они отбирают электроны у воды, которая присутствует во внутрилакоидном пространстве. Таким образом, световая фаза фотосинтеза протекает в мембране при распаде (фотолизе): Н 2 О + Q света → Н + + ОН —

Ионы гидроксила превращаются в реакционноспособные радикалы, отдавая свои электроны:

ОН — → .ОН + е —

ОН-радикалы объединяются и образуют свободный кислород и воду:

4НО. → 2Н 2 О + О 2 .

При этом кислород удаляется в окружающую (внешнюю) среду, а внутри тилактоида идет накопление протонов в особом "резервуаре". В результате там, где протекает световая фаза фотосинтеза, мембрана тилактоида за счет Н + с одной стороны получает положительный заряд. Вместе с этим за счет электронов она заряжается отрицательно.

Фосфирилирование АДФ

Там, где протекает световая фаза фотосинтеза, присутствует разность потенциалов между внутренней и наружной поверхностями мембраны. Когда она достигает 200 мВ, начинается проталкивание протонов сквозь каналы АТФ-синтетазы. Таким образом, световая фаза фотосинтеза происходит в мембране при фосфорилировании АДФ до АТФ. При этом атомарный водород направляется на восстановление особого переносчика никотинамидадениндинуклеотидфосфата НАДФ+ до НАДФ.Н2:

2Н + + 2е — + НАДФ → НАДФ.Н 2

Световая фаза фотосинтеза, таким образом, включает в себя фотолиз воды. Его, в свою очередь, сопровождают три важнейших реакции:

  1. Синтез АТФ.
  2. Образование НАДФ.Н 2 .
  3. Формирование кислорода.

Световая фаза фотосинтеза сопровождается выделением последнего в атмосферу. НАДФ.Н2 и АТФ перемещаются в строму хлоропласта. На этом световая фаза фотосинтеза завершается.

Другая группа реакций

Для темновой фазы фотосинтеза не нужна световая энергия. Она идет в строме хлоропласта. Реакции представлены в виде цепочки последовательно происходящих преобразований поступающего из воздуха углекислого газа. В итоге образуются глюкоза и прочие органические вещества. Первой реакцией является фиксация. В качестве акцептора углекислого газа выступает рибулозобифосфат (пятиуглеродный сахар) РиБФ. Катализатором в реакции является рибулозобифосфат-карбоксилаза (фермент). В результате карбоксилирования РиБФ формируется шестиуглеродное неустойчивое соединение. Оно практически мгновенно распадается на две молекулы ФГК (фосфоглицериновой кислоты). После этого идет цикл реакций, где она через несколько промежуточных продуктов трансформируется в глюкозу. В них используются энергии НАДФ.Н 2 и АТФ, которые были преобразованы, когда шла световая фаза фотосинтеза. Цикл указанных реакций именуется "циклом Кальвина". Его можно представить следующим образом:

6СО 2 + 24Н+ + АТФ → С 6 Н 12 О 6 + 6Н 2 О

Помимо глюкозы, в ходе фотосинтеза образуются прочие мономеры органических (сложных) соединений. К ним, в частности, относят жирные кислоты, глицерин, аминокислоты нуклеотиды.

С3-реакции

Они представляют собой тип фотосинтеза, при котором в качестве первого продукта образуются трехуглеродные соединения. Именно он описан выше как цикл Кальвина. В качестве характерных особенностей С3-фотосинтеза выступают:

  1. РиБФ является акцептором для углекислого газа.
  2. Реакция карбоксилирования катализирует РиБФ-карбоксилаза.
  3. Образуется шестиуглеродное вещество, которое впоследствии распадается на 2 ФГК.

Фосфоглицериновая кислота восстанавливается до ТФ (триозофосфатов). Часть из них направляется на регенерацию рибулозобифосфата, а остальная - превращается в глюкозу.

С4-реакции

Для этого типа фотосинтеза характерно появление четырехуглеродных соединений в качестве первого продукта. В 1965 году было выявлено, что С4-вещества появляются первыми у некоторых растений. Например, это было установлено для проса, сорго, сахарного тростника, кукурузы. Эти культуры стали именовать С4-растениями. В следующем, 1966-м, Слэк и Хэтч (австралийские ученые) выявили, что у них почти полностью отсутствует фотодыхание. Также было установлено, что такие С4 растения намного эффективнее осуществляют поглощение углекислого газа. В результате путь трансформации углерода в таких культурах стали именовать путем Хэтча-Слэка.

Заключение

Значение фотосинтеза очень велико. Благодаря ему из атмосферы ежегодно поглощается углекислый газ в огромных объемах (миллиардами тонн). Вместо него выделяется не меньшее количество кислорода. Фотосинтез выступает в качестве основного источника формирования органических соединений. Кислород участвует в образовании озонового слоя, обеспечивающего защиту живых организмов от воздействия коротковолновой УФ-радиации. В процессе фотосинтеза лист поглощает только 1% всей энергии света, падающего на него. Его продуктивность находится в пределах 1 г органического соединения на 1 кв. м поверхности за час.

ОПРЕДЕЛЕНИЕ: Фотосинтез – это процесс образования органических веществ из углекислого газа и воды, на свету, с выделением кислорода.

Краткое объяснение фотосинтеза

В процессе фотосинтеза участвуют:

1) хлоропласты,

3) углекислый газ,

5) температура.

У высших растений фотосинтез происходит в хлоропластах – пластидах (полуавтономные органеллы) овальной формы, содержащих пигмент хлорофилл, благодаря зеленому цвету которого части растения также имеют зеленый цвет.

У водорослей хлорофилл содержится в хроматофорах (пигментсодержащие и светоотражающие клетки). У бурых и красных водорослей, обитающих на значительной глубине, куда плохо доходит солнечный свет, имеются другие пигменты.

Если посмотреть на пищевую пирамиду всех живых существ, фотосинтезирующие организмы находятся в самом ее низу, в составе автотроф (организмов, синтезирующих органические вещества из неорганических). Поэтому они являются источником пищи для всего живого на планете.

При фотосинтезе кислород выделяется в атмосферу. В верхних слоях атмосферы из него образуется озон. Озоновый экран защищает поверхность Земли от жесткого ультрафиолетового излучения, благодаря чему жизнь смогла выйти из моря на сушу.

Кислород необходим для дыхания растений и животных. При окислении глюкозы с участием кислорода в митохондриях запасается почти в 20 раз больше энергии, чем без него. Это делает использование пищи гораздо более эффективным, что привело к высокому уровню обмена веществ у птиц и млекопитающих.

Более подробное описание процесса фотосинтеза растений

Ход фотосинтеза:

Процесс фотосинтеза начинается с попадания света на хлоропласты – внутриклеточные полуавтономные органеллы, содержащие зеленый пигмент. Под действием света хлоропласты начинают потреблять воду из почвы, расщепляя ее на водород и кислород.

Часть кислорода выделяется в атмосферу, другая часть идет на окислительные процессы в растении.

Сахар соединяется с поступающими из почвы азотом, серой и фосфором, таким путем зеленые растения производят крахмал, жиры, белки, витамины и другие сложные соединения, необходимые для их жизни.

Лучше всего фотосинтез идет под воздействием солнечного света, однако некоторые растения могут довольствоваться и искусственным освещением.

Сложное описание механизмов фотосинтеза для продвинутого читателя

До 60-ых годов 20 века ученым был известен только один механизм фиксации углекислого газа - по С3-пентозофосфатному пути. Однако недавно группа австралийских ученых смогла доказать, что у некоторых растений восстановление углекислого газа происходит по циклу C4-дикарбоновых кислот.

У растений с реакцией С3 фотосинтез наиболее активно происходит в условиях умеренной температуры и освещенности, в основном, в лесах и в темных местах. К таким растениям относятся почти все культурные растения и большая часть овощей. Они составляют основу рациона человека.

У растений с реакцией С4 фотосинтез наиболее активно происходит в условиях высоких температура и освещенности. К таким растениям относятся, например, кукуруза, сорго и сахарный тростник, которые произрастают в теплом и тропическом климате.

Сам метаболизм растений был обнаружен совсем недавно, когда удалось выяснить, что у некоторых растений, имеющих специальные ткани для запаса воды, углекислый газ накапливается в форме органических кислот и фиксируется в углеводах лишь спустя сутки. Такой механизм помогает растениям экономить запасы воды.

Как происходит процесс фотосинтеза

Растение поглощает свет при помощи зеленого вещества, которое называется хлорофилл. Хлорофилл содержится в хлоропластах, которые находятся в стеблях или плодах. Особенно большое их количество в листьях, потому что из-за своей очень плоской структуры листок может притянуть много света, соответственно, получить намного больше энергии для процесса фотосинтеза.

После поглощения хлорофилл находится в возбужденном состоянии и передает энергию другим молекулам организма растения, особенно, тем, которые непосредственно участвуют в фотосинтезе. Второй этап процесса фотосинтеза проходит уже без обязательного участия света и состоит в получении химической связи с участием углекислого газа, получаемого из воздуха и воды. На данной стадии синтезируются разные очень полезные для жизнедеятельности вещества, такие как крахмал и глюкоза.

Эти органические вещества используют сами растения для питания разных его частей, а также для поддержания нормальной жизнедеятельности. Кроме того, эти вещества также получают и животные, питаясь растениями. Люди тоже получают эти вещества, употребляя в пищу продукты животного и растительного происхождения.

Условия для фотосинтеза

Фотосинтез может происходить как под действием искусственного света, так и солнечного. Как правило, на природе растения интенсивно «работают» в весенне-летний период, когда необходимого солнечного света много. Осенью света меньше, день укорачивается, листья сначала желтеют, а потом опадают. Но стоит появиться весеннему теплому солнцу, как зеленая листва вновь появляется и зеленые «фабрики» снова возобновят свою работу, чтобы давать кислород, такой необходимый для жизни, а также множество других питательных веществ.

Альтернативное определение фотосинтеза

Фотоси́нтез (от др.-греч. фот- свет и синтез - соединение, складывание, связывание, синтез) - процесс преобразования энергии света в энергию химических связей органических веществ на свету фотоавтотрофами при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Фазы фотосинтеза

Фотосинтез – процесс довольно сложный и включает две фазы: световую, которая всегда происходит исключительно на свету, и темновую. Все процессы происходят внури хлоропластов на особых маленьких органах - тилакодиах. В ходе световой фазы хлорофиллом поглощается квант света, в результате чего образуются молекулы АТФ и НАДФН. Вода при этом распадается, образуя ионы водорода и выделяя молекулу кислорода. Возникает вопрос, что это за непонятные загадочные вещества: АТФ и НАДН?

АТФ – это особые органические молекулы, которые имеются у всех живых организмов, их часто называют «энергетической» валютой. Именно эти молекулы содержат высокоэнергетические связи и являются источником энергии при любых органических синтезах и химических процессах в организме. Ну, а НАДФН – это собственно источник водорода, используется непосредственно при синтезе высокомолекулярных органических веществ - углеводов, который происходит во второй, темновой фазе фотосинтеза с использованием углекислого газа.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла, и все они поглощают солнечный свет. Одновременно свет поглощается и другими пигментами, но они не умеют осуществлять фотосинтез. Сам процесс происходит лишь только в некоторых молекулах хлорофилла, которых совсем немного. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры или ловушки. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно в фотосистеме II - P680, а в фотосистеме I - P700. Они поглощают свет именно такой длины волны(680 и 700 нм).

По схеме более понятно, как все выглядит и происходит во время световой фазы фотосинтеза.

На рисунке мы видим две фотосистемы с хлорофиллами Р680 и Р700. Также на рисунке показаны переносчики, по которым происходит транспорт электронов.

Итак: обе молекулы хлорофилла двух фотосистем поглощают квант света и возбуждаются. Электрон е- (на рисунке красный) у них переходит на более высокий энергетический уровень.

Возбужденные электроны обладает очень высокой энергией, они отрываются и поступают в особую цепь переносчиков, которая находится в мембранах тилакоидов – внутренних структур хлоропластов. По рисунку видно, что из фотосистемы II от хлорофилла Р680 электрон переходит к пластохинону, а из фотосистемы I от хлорофилла Р700 – к ферредоксину. В самих молекулах хлорофилла на месте электронов после их отрыва образуются синие дырки с положительным зарядом. Что делать?

Чтобы восполнить недостачу электрона молекула хлорофилла Р680 фотосистемы II принимает электроны от воды, при этом образуются ионы водорода. Кроме того, именно за счет распада воды образуется выделяющийся в атмосферу кислород. А молекула хлорофилла Р700, как видно из рисунка, восполняет недостачу электронов через систему переносчиков от фотосистемы II.

В общем, как бы ни было сложно, именно так протекает световая фаза фотосинтеза, ее главная суть заключается в переносе электронов. Также по рисунку можно заметить, что параллельно транспорту электронов происходит перемещение ионов водорода Н+ через мембрану, и они накапливаются внутри тилакоида. Так как их там становится очень много, они перемещаются наружу с помощью особого сопрягающего фактора, который на рисунке оранжевого цвета, изображен справа и похож на гриб.

В завершении мы видим конечный этап транспорта электрона, результатом которого является образование вышеупомянутого соединения НАДН. А за счет переноса ионов Н+ синтезируется энергетическая валюта – АТФ (на рисунке видно справа).

Итак, световая фаза фотосинтеза завершена, в атмосферу выделился кислород, образовались АТФ и НАДН. А что же дальше? Где обещанная органика? А дальше наступает темновая стадия, которая заключается, главным образом, в химических процессах.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица. Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза.

В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота). Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений.

Дальнейший синтез в хлоропластах происходит довольно сложно. В его конечном итоге образуется шестиуглеродное соединение, из которого в дальнейшем могут синтезироваться глюкоза, сахароза или крахмал. В виде этих органических веществ растение накапливает энергию. При этом в листе остается только небольшая их часть, которая используется для его нужд, в то время как остальные углеводы путешествуют по всему растению, поступая туда, где больше всего нужна энергия - например, в точки роста.

Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.

Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в . Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.

Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота - ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.

Заметка: Живые существа, которые зависят от других продуктов питания называются . Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются . Зеленые растения и водоросли - примеры автотрофов.

В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.

Определение фотосинтеза

Фотосинтез - это химический процесс, посредством которого растения, некоторые и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.


Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей - АТФ и НАДФН - для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные - несколько. Листовая пластинка - одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис - слой клеток, который является покровной тканью листа. Его главная функция - защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл - это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний - палисадный и нижний - губчатый.

  • Защитные клетки

Защитные клетки - специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода . Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

(Световая энергия показана в скобках, поскольку она не является веществом)

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • : обеспечивает структурную и механическую поддержку, защищает клетки от , фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • : обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • : действует как барьер, контролируя движение веществ в клетку и из нее.
  • : как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • : полость внутри клеточной цитоплазмы, которая накапливает воду.
  • : содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны - они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа - устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки ;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез - это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в ). Вся пища, которую мы едим, происходит от организмов, являющихся фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для , которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .