Переваривание углеводов. Переваривание и всасывание углеводов Где начинают перевариваться углеводы

Рыбы, как и высшие позвоночные, не способны к первичному биосинтезу углеводов, поэтому главным источником углеводов для них является пища, в первую очередь растительного происхождения.

В питании мирных рыб углеводы растительных кормов являются основным источником энергии, при их недостатке организм вынужден использовать значительную часть белка корма на покрытие энергетических потребностей, что снижает эффективность использования кормов и ведет к снижению уровня продуктивности.

Углеводы делят на три класса: моносахариды, олигосахариды, полисахариды. В кормах из моносахаридов в основном встречаются гексозы и пентозы (глюкоза, фруктоза, манноза, галактоза, рибоза, арабиноза). Олигосахариды чаще представлены мальтозой, сахарозой, трегалозой и целлобиозой как продуктом промежуточного превращения клетчатки. Полисахариды пищи можно разделить на две группы: структурные и универсальные пищевые. Структурные полисахариды обычно не перевариваются позвоночными или перевариваются с помощью кишечной микрофлоры. К ним относят целлюлозу, лигнин, пентозаны, маннаны. Универсальные пищевые полисахариды представлены гликогеном и крахмалом.

Животные и рыбы усваивают углеводы только в виде моносахаридов, поэтому олигосахариды и полисахариды в пищеварительном тракте подвергаются ферментативному гидролизу до моносахаридов. Усвоение углеводов рыбами происходит примерно на 50-60% и зависит от сложности их структуры. Например, у форели углеводы усваиваются на 40%, в том числе глюкоза - на 100%, мальтоза - на 90%, сахароза - на 70%, лактоза - на 60%, сырой крахмал - на 40%, варе-ный - на 60%.

У человека и высших животных переваривание углеводов начинается уже в ротовой полости, где пища подвергается механической (пережевывание) и химической обработке под действием довольно активных ферментов слюны - амилазы и мальтазы.

У рыб отсутствуют слюнные железы. У некоторых видов рыб имеются глоточные зубы и небная пластина, с помощью которых корм частично перетирается и смачивается слизью, выделяемой слизистой глотки и пищевода. В составе слизи обнаруживаются амилаза и мальтаза. У хищных рыб эти ферменты малоактивны и не играют существенной роли в пищеварении. у безжелудочных рыб, таких как карп, амилаза и мальтаза достаточно активно участвуют в предварительной обработке пищи. Заглатываемая пища через короткий пищевод попадает в желудок, у безжелудочных рыб - в передний, несколько расширенный отдел кишечника.

Переваривание углеводов в желудке. У теплокровных из-за отсутствия или низкой активности амилолитических ферментов в желудочном соке пищеварение углеводов в желудке практически отсутствует. У рыб (угорь, судак, ставрида, радужная форель, желтохвостик) в желудочном соке обнаружены ферменты класса гидролаз, подкласса гликозидаз - амилаза, хитиназа, лизоцим, гиалуронидаза, осуществляющие гидролиз гликозидных связей.

Большинство гликозидаз проявляют максимальную активность при рН 6,0-7,5. Кислая реакция желудочного сока (рН 0,8-4,0) практически не позволяет проявлять активность амилазе и гиалуронидазе, сохраняя возможность участия в пищеварении хитиназе и лизоциму.

Хитиназа (рН оптимум 4,6-4,0) расщепляет хитин до дисахарида хитобиозы и частично до его структурного мономера N-ацетил-глюкозамина:

СН2ОН CH2OH СН2ОН

хитиназа

ОН Н О OH Н O ОН Н nH2O

молекула хитина

СН2-ОН CH2-OH СН2-ОН

m ОН Н О OH Н + х ОН Н

ОН OH ОН ОН

Н NH-CO-CH3 Н NH-CO-CH3 n Н NH-CO-CH3

хитобиоза N-ацилглюкозамин

Хитин - представитель мукополисахаридов, является главной составной частью покровных тканей членистоногих, где он находится в комплексе с белками и минеральными солями. Роль хитиназы заключается в гидролизе гликозидных связей хитина, что способствует разрушению эндоскелета членистоногих. Осуществляя эту работу, хитиназа способствует процессам мацерирования (лишение структуры, разжижение) механически не обработанной пищи, и тем самым делает ее легко доступной для действия других ферментов. Активность хитиназы невелика и полного усвоения покровных тканей насекомых, ракообразных, оболочек яиц артемий не происходит. Образующиеся продукты гидролиза хитина не представляют для организма высокой пищевой ценности и практически полностью выводятся из организма.

В желудочном соке обнаружен высокоактивный лизоцим-фермент, расщепляющий муромовую кислоту, входящую в полисахаридные оболочки многих микроорганизмов, до N-ацетилглюкозамина. Разрушая клеточные оболочки микроорганизмов, лизоцим способствует проникновению других пищеварительных ферментов внутрь клетки, что важно для рыб, питающихся зоопланктоном.

Присутствующая в желудочном соке соляная кислота способствует набуханию и ослизнению оболочек растительных клеток и тем самым готовит углеводную часть пищи к дальнейшему ферментативному гидролизу.

Переваривание углеводов в кишечнике. Углеводы корма практически без изменений переходят из желудка в тонкий отдел кишечника. У безжелудочных рыб углеводы пищи через короткий пищевод сразу попадают в кишечник. В просвет кишечника изливаются кишечный и панкреатический соки, в составе которых обнаруживают до 22 ферментов, участвующих в переваривании белков, липидов, углеводов. У рыб кишечный сок выделяется эпителиоцитами слизистой оболочки всех отделов кишечника. Плотная часть кишечного сока представлена в основном отторгнутыми эпителиальными клетками, которые содержат основную массу пищеварительных ферментов и служат источником эндогенного питания, компенсируя недостаточное поступление с пищей органических веществ. Жидкая часть кишечного сока (вода и электролиты) способствует разжижению содержимого кишечника и созданию щелочной среды, наиболее оптимальной для ферментов кишечного сока и поджелудочной железы.

У рыб основное переваривание пищевых веществ, в том числе и углеводов, происходит за счет ферментов, выделяемых панкреатической железой. Панкреатическая железа может не иметь строгой локализации и выделять сок через самостоятельный проток или совместно с желчью. Это бесцветная слабощелочная жидкость (рН 7,3-8,7). Ферменты кишечного и панкреатического соков проявляют максимальную активность в пределах рН 6,0-7,5. у желудочных рыб рН кишечного содержимого составляет 6,4-7,3, у безжелудочных - 7,0-8,6. Необходимые значения реакции среды достигаются наличием в выделяемых соках бикарбонатов и слизи кишечного канала. Ферменты, участвующие в гидролизе углеводов, представлены глюкозидазами (карбогидразами), основными из которых являются амилазы (-, -, - амилазы), мальтаза, сахараза, трегалаза, фосфотаза. у некоторых рыб обнаружена в незначительном количестве лактаза.

Гидролиз полисахаридов гликогена и крахмала протекает при участии четырех видов амилаз: -амилазы, -амилазы, -амилазы и глюкоамилазы; - и -амилазы осуществляют гидролиз крахмала и гликогена преимущественно по (1-4) - связи до дисахарида мальтозы, глюкоамилаза по (1-6) - связи до глюкозы, -амилаза (собственно кишечный фермент) последовательно отщепляет остатки глюкозы с концов олиго- и полисахаридов. В результате действия амилаз образуются промежуточные продукты гидролиза крахмала - декстрины (С6Н10О5)х. В зависимости от величины остатков амилозных цепей выделяют амило-, эритро- ахро- и мальтодекстрины. При образовании последних включается в работу фермент мальтаза и гидролизует мальтозу до двух молекул -D-глюкозы. По такой же схеме протекает гидролиз гликогена:

Схема гидролиза крахмала (гликогена)

СН2ОН CH2OH СН2ОН

Н Н Н Н Н Н Н Н

ОН Н OH Н ОН Н + n H2O

H ОН H OH n H OH

фрагмент молекулы крахмала (гликогена) (С6Н10О5)n

СН2ОН CH2OH СН2ОН

амилазы Н Н Н Н мальтаза

ОН Н +хН2О ОН Н О Н Н Н2О

H ОН х H OH OH OH

декстрины (амило-, эритро-, мальтоза

ахро-, мальтодекстрины)

D-глюкоза

В кишечнике рыб обнаружены олигазы: сахараза (инвертаза), лактаза (галактозидаза) и трегалаза. В пищеварении рыб сахараза и лактаза не играют такой роли, как у теплокровных, их немного и они мало- активны. У карповых сахараза не обнаружена. Расщепление сахарозы может осуществляться более активной мальтазой (-гликозидазой).

Разрыв гликозидазной связи при участии мальтазы идет со стороны остатка -глюкозы, сахараза осуществляет разрыв со стороны

Фруктозы:

Схема гидролиза сахарозы

СН2ОН СН2ОН Н

Н сахараза

ОН О СН2ОН (мальтаза)

Н ОН ОН Н +Н2О

СН2ОН СН2ОН Н

ОН Н + Н ОН

ОН ОН ОН СН2ОН

D-глюкоза,D-фруктоза

Из олигаз наиболее активна трегалаза, расщепляющая дисахарид трегалазу:

Схема гидролиза трегалозы

CH2OH СН2ОН СН2-ОН

Н Н Н Н трегалаза Н Н

ОН Н ОН Н ОН Н

ОН ОН ОН ОН

Н ОН Н ОН Н ОН

трегалоза,D-глюкоза

В некоторых видах водорослей содержание трегалозы может достигать 10-15% от сухого вещества.

У растительноядных рыб количество и активность амилолитических ферментов выше, чем у хищных. Например, у карпа амилаза в 1000 раз более активна, чем у щуки. Рыбы сильно различаются между собой по гликолитической активности кишечника, т. е. по количеству выделяемых пищеварительными железами амилазы и глюкозидаз. Полисахариды хорошо перевариваются такими растительноядными рыбами, как толстолобик, амур, тиляпия. Карпы усваивают крахмал значительно хуже. Их пища не должна содержать более 15-20% крахмала. При избыточном содержании его в пищевом рационе наблюдается расстройство пищеварения и в результате резко замедляется рост рыбы. Использование длительных протеиновых диет у растительноядных рыб изменяет реакцию среды кишечного содержимого в кислую сторону и тем самым снижает активность амилолитических ферментов, повышая активность протеолитических ферментов. Одновременно происходит снижение доли амилолитических ферментов в пищеварительных соках.

Всасывание углеводов. У рыб основное всасывание пищевых веществ происходит в кишечнике.

В настоящее время достоверно доказано, что заключительная стадия гидролиза пищевых биополимеров происходит на поверхности мембраны микроворсинок (мембранное пищеварение) и осуществляется экзогидролазами, расщепляющими более мелкие молекулы олигосахаридов, дисахаридов до моносахаридов - продуктов для транспорта и всасывания. Образовавшиеся моносахариды без рассеивания в водной среде всасываются в слизистую кишечника.

Всасывание может осуществляться несколькими путями: посредством диффузионного, конвекционного (осмотического) потока, специфического (пассивного или активного) транспорта, путем пиноцитоза.

Пиноцитоз у взрослых организмов не играет практически никакой роли, так как разрешающий радиус мембран (0,4-0,6 нм) не позволяет проникать крупным молекулам внутрь клеток слизистой оболочки.

Диффузионный путь должен быть симметричным, т. е. при одинаковом градиенте концентрации вещества потоки из просвета кишечника в кровь и в обратном направлении должны быть равны. Иначе говоря, путем диффузии сахара переходят в кровь при высокой их концентрации в просвете кишки.

Наибольшее значение в процессе всасывания имеет активный транспорт. в этом случае моносахариды всасываются при участии специализированных комплексов-переносчиков, обеспечивающих перенос вещества через апикальную мембрану против градиента концентрации. Дальнейший путь сахаров из клеток через базальную мембрану эпителоицита в кровь осуществляется по градиенту концентрации.

У рыб гексозы всасываются быстрее, чем пентозы. Например, у линя быстрее всасывается глюкоза, затем галактоза, фруктоза и ксилоза. У щуки последовательность иная: галактоза, глюкоза, арабиноза, ксилоза, фруктоза. Установлено, что оптимальные концентрации глюкозы, обеспечивающие максимальную скорость всасывания в тонкой кишке рыб, значительно ниже таковых у высших позвоночных животных и колеблются в пределах 40-50%. При кормлении карпа концентрированными кормами лучше всего всасываются в кишечнике уроновые кислоты как продукты окисления моносахаридов. В отличие от галактоз всасывание маннозы и ксилозы происходит медленно. Не все сахара обладают способностью активно транспортироваться, и зависит это от конфигурации сахаров, т. е. от того, какой из стереоизомеров всасывается. D-глюкоза может всасываться против 20-кратного градиента, а L-глюкоза диффундирует только пассивно и распространяется поровну по обе стороны мембраны. По тому же принципу осуществляется транспорт D-галактозы и большинства других сахаров. в отличие от L-галактозы манноза, рамноза, фруктоза L-ряда практически не поступают и не включаются в метаболизм. D-глюкозамин непосредственно не переносится, но оказывает ингибирующее действие на всасывание глюкозы.

Процессы мембранного пищеварения углеводов и всасывание продуктов их гидролиза определяются характером субстратов, изменяются с возрастом рыб и подвержены сезонным колебаниям.

Потребность в углеводах взрослого организма составляет 350-400 г в сутки, при этом целлюлозы и других пищевых волокон должно быть не менее 30-40 г.

С пищей в основном поступают крахмал, гликоген, целлюлоза, сахароза, лактоза, мальтоза, глюкоза и фруктоза, рибоза.

Переваривание углеводов в желудочно-кишечном тракте

Ротовая полость

Со слюной сюда поступает кальций-содержащий фермент α-амилаза . Оптимум ее рН 7,1-7,2, активируется ионами Cl – . Являясь эндоамилазой , она беспорядочно расщепляет внутренние α1,4-гликозидные связи и не влияет на другие типы связей.

В ротовой полости крахмал и гликоген способны расщепляться α-амилазой до декстринов – разветвленных (с α1,4- и α1,6-связями) и неразветвленных (с α1,4-связями) олигосахаридов. Дисахариды ничем не гидролизуются.

Желудок

Из-за низкой рН амилаза инактивируется, хотя некоторое время расщепление углеводов продолжается внутри пищевого комка.

Кишечник

В полости тонкого кишечника работает панкреатическая α-амилаза , гидролизующая в крахмале и гликогене внутренние α1,4-связи с образованием мальтозы, мальтотриозы и декстринов.

Дорогие студенты, доктора и коллеги.
Что касается переваривания гомополисахаридов (крахмала, гликогена) в ЖКТ...
В моих лекциях (pdf -формат) написано о трех ферментах, выделяемых с панкреатическим соком: α-амилаза, олиго-α-1,6-глюкозидаза, изомальтаза.
ОДНАКО , при перепроверке обнаружилось, что ни в одной попавшейся мне (ноябрь 2019г) публикации в англоязычном инете нет упоминания о панкреатических олиго-α- 1,6-глюкозидазе и изомальтазе . В то же время в рунете такие упоминания встречаются регулярно, хотя и с расхождением - то ли это панкреатические ферменты, то ли находятся на стенке кишечника.
Таким образом, налицо недостаточно подтвержденные данные или перепутанные или вообще ошибочные. Поэтому пока я убираю с сайта упоминание о данных ферментах, и постараюсь уточнить информацию.

Кроме полостного, имеется еще и пристеночное пищеварение, которое осуществляют:

  • сахаразо-изомальтазный комплекс (рабочее название сахараза ) – в тощей кишке гидролизует α1,2-, α1,4-, α1,6-гликозидные связи, расщепляет сахарозу, мальтозу, мальтотриозу, изомальтозу,
  • β-гликозидазный комплекс (рабочее название лактаза ) – гидролизует β1,4-гликозидные связи в лактозе между галактозой и глюкозой. У детей активность лактазы очень высока уже до рождения и сохраняется на высоком уровне до 5-7 лет, после чего снижается,
  • гликоамилазный комплекс – находится в нижних отделах тонкого кишечника, расщепляет α1,4-гликозидные связи и отщепляет концевые остатки глюкозы в олигосахаридах с восстанавливающего конца.

Роль целлюлозы в пищеварении

Целлюлоза ферментами человека не переваривается, т.к. не образуются соответствующие ферменты. Но в толстом кишечнике под действием ферментов микрофлоры некоторая часть ее может гидролизоваться с образованием целлобиозы и глюкозы. Глюкоза частично используется самой микрофлорой и окисляется до органических кислот (масляной, молочной), которые стимулируют перистальтику кишечника. Малая часть глюкозы может всасываться в кровь.

Переваривание крахмала (и гликогена) начинает амилаза слюны.

Амилаза слюны является а-амилазой. Под влиянием этого фермента в основном происходят первые фазы распада крахмала (или гликогена) с образованием декстринов (в небольшом количестве образуется и мальтоза). Переваривание крахмала или гликогена в ротовой полости только начинается. Пища, более или менее смешанная со слюной, проглатывается и проходит в желудок.

Желудочный сок сам по себе не содержит ферментов, расщепляющих сложные углеводы. В желудке действие а-амил азы слюны прекращается, так как желудочное содержимое имеет резко кислую реакцию (pH 1,5-2,5). Однако в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие слюнной амилазы некоторое время продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы. Наиболее важная фаза распада крахмала (и гликогена) протекает в двенадцатиперстной кишке под действием а-амилазы поджелудочного сока. Здесь pH возрастает приблизительно до нейтральных значений, и при этих условиях а-амилаза панкреатического сока обладает почти максимальной активностью. Этот фермент заканчивает работу, начатую слюнной амилазой и завершает превращение крахмала и гликогена в мальтозу.

Таким образом, расщепление крахмала и гликогена до мальтозы происходит в кишечнике под действием трех ферментов - панкреатической а-амилазы, амило-1,6-глюкозидазы и олиго-1,6-глюкозидазы.

Образующаяся мальтоза оказывается только временным продуктом, так как она быстро гидролизуется под влиянием фермента мальтазы (а- глюкозидазы) на две молекулы глюкозы. Кишечный сок содержит также активную сахарозу, под влиянием которой из сахарозы образуются глюкоза и фруктоза. Лактоза, которая содержится только в молоке, под действием лактазы кишечного сока расщепляется на глюкозу и галактозу. В конце концов углеводы пищи распадаются на составляющие их моносахариды (преимущественно глюкоза, фруктоза и галактоза), которые всасываются кишечной стенкой и затем попадают в кровь.

Скорость всасывания отдельных моносахаридов резко отличается, хотя молекулярная масса всех гексоз одинакова и лишь пентозы незначительно отличаются в этом отношении.

Глюкоза и галактоза всасываются быстрее, чем другие моносахариды.

Свыше 90% всосавшихся моносахаридов (главным образом глюкозы) через капилляры кишечных ворсинок попадают в кровеносную систему и с током крови через воротную вену доставляются прежде всего в печень. Остальное количество моносахаридов поступает по лимфатическим путям в венозную систему.

В печени значительная часть всосавшейся глюкозы превращается в гликоген, который откладывается в печеночных клетках в форме своеобразных, видимых под микроскопом блестящих глыбок.

Благодаря способности к отложению гликогена (главным образом в печени и мышцах и в меньшей степени в других органах и тканях) создаются условия для накопления в норме некоторого резерва углеводов. При повышении энергетических затрат в организме в результате возбуждения ЦНС обычно происходит усиление распада гликогена и образование глюкозы (глюкогенез).

Помимо непосредственной передачи нервных импульсов к эффекторным органам и тканям, при возбуждении ЦНС повышается функция ряда желез внутренней секреции (мозговой слой надпочечников, щитовидная железа, гипофиз и др.), гормоны которых активируют распад гликогена, прежде всего в печени и мышцах. Результат действия адреналина состоит в ускорении превращения гликогена в глюкозу.

Известно, что фосфоролиз играет ключевую роль в мобилизации полисахаридов. Фосфорилазы переводят полисахариды (в частности, гликоген) из запасной формы в метаболически активную форму; в присутствии фосфорилазы гликоген распадается с образованием фосфорного эфира глюкозы (глюкозо-1- фосфата) без предварительного расщепления на более крупные обломки молекулы полисахарида.

Реакция, катализируемая фосфорилазой, в общей форме выглядит так:

В этой реакции (C 6 Hi 0 O5) n означает полисахаридную цепь гликогена, а (СбН1о0 5)п_1 - ту же, цепь, но укороченную на один глюкозный остаток.

Можно считать, что сохранение постоянства концентрации сахара в крови прежде всего есть результат одновременного протекания двух процессов: поступления глюкозы в кровь из печени и потребления ее из крови тканями, где она используется в первую очередь как энергетический материал.

В тканях (в том числе и в печени) существуют два основных пути распада глюкозы: анаэробный путь, который идет в отсутствии кислорода, и аэробный путь, для осуществления которого необходим кислород.

Гликолиз (от греч. glycus - сладкий и lysis - растворение, распад) - сложный ферментативный процесс превращения глюкозы, протекающий в тканях человека и животных без потребления кислорода. Конечным продуктом гликолиза является молочная кислота. В процессе гликолиза образуется также АТФ. Суммарное уравнение гликолиза можно изобразить следующим образом:

В анаэробных условиях гликолиз - единственный процесс в животном организме, поставляющий энергию. Именно благодаря процессу гликолиза организм человека и животных определенный период времени может осуществлять ряд физиологических функций в условиях недостаточности кислорода. В тех случаях, когда гликолиз протекает в присутствии кислорода, говорят об аэробном гликолизе.

Биологическое значение процесса гликолиза прежде всего заключается в образовании богатых энергией фосфорных соединений.

Спиртовое брожение осуществляется так называемыми дрожжеподобными организмами, а также некоторыми из плесневых грибов. Суммарную реакцию спиртового брожения можно написать так:

По своему механизму спиртовое брожение чрезвычайно близко к гликолизу. Расхождение начинается лишь после этапа образования пировиноградной кислоты. При гидролизе пировиноградная кислота при участии фермента лактатдегидрогена- зы и кофермента НАДН 2 восстанавливается в молочную кислоту. При спиртовом брожении этот конечный этап заменен двумя другими ферментативными реакциями - пируватдекарбоксилазной и алкогольдегидрогеназной.

Конечными продуктами спиртового брожения являются этиловый спирт и С0 2 , а не молочная кислота, как при гликолизе.

Глюконеогенез - синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная кислоты, так называемые гликогенные аминокислоты и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе могут быть пируват или один из промежуточных продуктов цикла трикарбоно- вых кислот. У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (корковое вещество).

Большинство стадий глюконеогенеза представляет собой обращение реакций гликолиза.

Питание современного человека «бьется» в такт с активным ритмом жизни. Одни «глотают на ходу», так как нет времени остановиться в суетливом потоке и насладиться трапезой. Другие, заядлые спортсмены, воспринимают пищу только как источник роста мышечных объемов. Третьи – все и вся (проблемы, стрессы) заедают «вкусняшками». Не будем разбирать правильно ли это, а обратимся вот к какому вопросу. Кто хоть раз задумывался, что происходит с едой после того, как она попадает в желудок? Полагаем, что единицы. А ведь от того, как переваривается пища, зависит правильная работа ЖКТ и здоровья человека в целом. Попробуем разобраться с этими вопросами. А также узнаем, сколько времени переваривается пища, какая усваивается быстрее, какая медленнее (таблицы) и многое другое.

Немногие из вас знают, что процесс переваривания и усваивания продуктов питания прямо влияет на крепкое здоровье человека. Зная, как устроен наш организм, мы с легкостью можем откорректировать свой рацион и сделать его сбалансированным. От того, сколько времени переваривается пища, зависит работа всей системы пищеварения. Если органы ЖКТ функционируют правильно, то не нарушается обмен веществ, нет проблем с лишним весом и организм полностью здоров.

Как устроен обмен веществ?

Начнем с понятия «переваривание пищи». Это совокупность биохимических и механических процессов, вследствие которых еда измельчается и расщепляется на полезные организму питательные вещества (минералы, витамины, макро- и микроэлементы).

Из ротовой полости пища попадает в желудок, где под воздействием желудочного сока она становится жидкой. По времени этот процесс длится 1-6 часов (в зависимости от съеденного продукта). Далее трапеза двигается в 12-перстную кишку (начало тонкого кишечника). Здесь пища под воздействием ферментов распадается на необходимые питательные вещества. Белки превращаются в аминокислоты, жиры в жирные кислоты и моноглицериды, углеводы – в глюкозу. Всасываясь через стенки кишечника, полученные вещества попадают в кровь и разносятся по всему организму человека.

Переваривание и усвоение – это сложные процессы, которые длятся часами. Человеку важно знать и учитывать факторы, влияющие на скорость этих реакций.

Читайте также -

Сколько времени переваривается еда? От чего зависит длительность этого процесса?

  • От способа обработки поступивших в желудок продуктов, наличия жира, специй и так далее.
  • Сколько времени желудок переваривает пищу, зависит от ее температуры . Скорость усвоения холодного намного ниже горячего. Но и та и другая температура пищевого комка мешает нормальному пищеварению. Холодное попадает в нижние этажи ЖКТ раньше времени, захватывая с собой комки еще непереваренной пищи. Слишком горячее блюдо обжигает слизистую пищевода. Оптимальная температура для нашего желудка – теплая еда.
  • От сочетаемости потребляемых продуктов питания. Например, мясо, рыба и яйцо – белковая закуска, которая переваривается разное время. Если съесть их за один прием, то желудок окажется в недоумении, не зная какой белок переваривать первым. Яйцо переваривается быстрее и вместе с ним в тонкий кишечник может проскочить недопереваренный кусок мяса. Это может привести к процессам брожения и даже гниения.

По скорости усвоения и сочетаемости выделяют три основные категории пищи :


Как и где перевариваются углеводы?

Расщепление углеводов осуществляется под действием такого фермента, как амилаза. Последняя содержится в слюнных и поджелудочных железах. Поэтому углеводная пища начинает перевариваться еще в ротовой полости. В желудке она не переваривается. Желудочный сок имеет кислую среду, которая тормозит действие амилазы, нуждающейся в щелочной рН. Где же все-таки перерабатываются углеводы – в 12-перстной кишке. Здесь они окончательно перевариваются. Под действием фермента поджелудочной железы гликоген превращается в питательные вещества дисахариды. В тонком кишечнике они преобразуются в глюкозу, галактозу или фруктозу.

Углеводы бывают 2-х видов – простые (быстрые) и сложные (медленные). Сколько времени они перевариваются, зависит от их типа. Сложные вещества перевариваются медленнее и с такой же скоростью усваиваются. Сколько по времени они находятся в пищеварительном тракте, смотрите таблицы выше.

Как долго перевариваются быстрые (простые) углеводы (таблица) ? Кстати, эта группа питательных веществ способствует практически моментальному повышению уровня сахара в крови.

Читайте также -

Как и где перевариваются жиры?

Нелюбовь к жирам – традиционна и поддерживается многими диетологами. С чем это связано? – С их высокой калорийностью. На 1 грамм приходится целых 9 ккал. Тем не менее, жиры в рационе человека – важны. Они являются ценнейшим источником энергии организма. От их наличия в рационе зависит усвоение витаминов A, D, E и других. Кроме того, пища богатая полезными жирами благоприятно влияет на весь пищеварительный процесс. К таким продуктам относится мясо и рыба, оливковое масло, орехи. Но есть и вредные жиры – жареные блюда, фастфуд, кондитерские изделия.

Как же и где перевариваются жиры в организме человека? – Во рту такая пища не подвергается никаким изменениям, так как в слюне нет ферментов, способных расщеплять жиры. В желудке также нет нужных условий для переваривания этих веществ. Остаются – верхние отделы тонкого кишечника, то есть 12-перстная кишка.

-->

Как и где перевариваются белки?

Белки – еще один важный элемент питания каждого человека. Их рекомендуется употреблять на завтрак и обед вместе с пищей, богатой клетчаткой.

Сколько по времени перевариваются белки, зависит от следующих факторов :

  • Происхождение белков – животные и растительные (смотрите таблице выше).
  • Состав . Известно, что протеины имеют определенный набор аминокислот. Недостаток одной может препятствовать правильному усвоению других.

Белки начинают перевариваться в желудке. В желудочном соке присутствует пепсин, способный справиться с этой сложной задачей. Далее расщепление продолжается в 12-перстной кишке и заканчивается в тонком кишечнике. В ряде случаев конечным пунктом переваривания является толстая кишка.

Вместо заключения

Теперь мы знаем, сколько времени переваривается пища в организме человека.

Что еще важно знать :

  • Если выпить стакан воды на голодный желудок, то жидкость попадает сразу в кишечник.
  • Нельзя пить напитки после еды. Жидкость разбавляет желудочный сок, что мешает ей перевариваться. Так вместе с водой в кишечник могут попасть непереваренные продукты. Последнее вызывает процессы брожения и даже гниения.
  • Чтобы увеличить скорость усвоения пищи, ее следует тщательнее пережевывать в ротовой полости.
  • Вечером рекомендуется потреблять продукты 1-ой и 2-ой группы (смотрите таблицу выше).
  • Лучше не есть за один прием пищу с разным временем переваривания в желудке.
  • Продукты четвертой категории должны присутствовать в минимальном объеме в рационе.
  • Чтобы семена и орехи быстрее усвоились, их рекомендуется растолочь и замочить на ночь в воде.

Перед отправкой в холодильник продукты питания, судочки, тарелки, банки с остатками напитков следует накрыть, чтобы они сохранили свою свежесть. С решением этой проблемы отлично справляются эластичные силиконовые крышки. Они изготовлены из специального пищевого силикона. Крышки герметичны, воздухонепронецаемы, поэтому продукты всегда остаются свежими. Приобрести по выгодной цене можно

Углеводы, наряду с белками и липидами, являются важ­нейшими компонентами клеток живых организмов. В них они выполняют весьма разнообразные и важные функции: энергетическую (служат источником макроэргических со­единений и тепла), защитную (полисахариды входят в сос­тав клеточных мембран, антител), структурную (участвуют в образовании тканевых, клеточных и субклеточных струк­тур), используются для биосинтеза нуклеиновых кислот (рибоза и дезоксирибоза), липидов, белков и многих других би­ологически важных соединений.

Источником углеводов организма служат углеводы пищи, основным из которых является крахмал. Крахмал (полисахарид) - это основная форма депонирования углеводов растениями, образуется в них в результате фотосинтеза. Гликоген – форма депонирования углеводов в тканях животных. Лактоза (дисахарид) содержится в молоке, это основной углевод в питании грудных детей. В меде и фруктах содержатся моносахариды глюкоза и фруктоза. Норма углеводов в питании составляет 400-500 г.

Гликопротеины состоят из апопротеина и углеводной части, которая редко превышает 30% (глюкоза, манноза, галактоза, фукоза, их аминопроизводные, нейраминовая и сиаловая кислоты). К гликопротеинам относят большую часть белков, секретируемых клеткой, а также белков плазмы крови (церулоплазмин, гаптоглобин, трансферрин, белки свертывания крови, иммуноглобулины и т. д). К классу гликопротеинов относят почти все белки внешней мембраны клетки. Они обеспечивают «узнавание» клеток, специфичность их контактов и адгезивные свойства. Протеогликаны. В этом семействе сложных белков на долю полисахаридов, представленных гликозаминогликанами (мукополисахаридами), приходится более 95% от всей массы молекулы. Протеогликаны присутствуют в межклеточном веществе тканей и служат «цементом», который скрепляет все клетки в единое целое - орган. Много их содержится в составе хрящей и сухожилий, в составе синовиальной жидкости, где они выполняют функцию смазки трущихся поверхностей суставов. К протеогликанам относится также гепарин (антикоагулянт).

Гидролиз (переваривание) крахмала и гликогена начи­нается в ротовой полости под влиянием амилазы слюны. Из­вестны α,β,γ - формы амилазы слюны. Первая (α-амилаза) гидролизует внутренние связи в молекуле полисахаридов, обра­зуя олигосахара. Вторая (β -амилаза), отщепляет с конца полисахарндной цепи молекулы мальтозы; γ -амилаза от­щепляет от полисахарида молекулы глюкозы. Оптимум рН действия всех названных амилаз лежит в пределах 6,8-7,0. В желудке, где сильно кислая реакция среды (рН 1,5-2,5), названные ферменты неактивны, и углеводы в нем не пере­вариваются. Лишь внутри пищевого комка амилаза слюны продолжает действовать. В 12-перстной кишке углеводы начинают ин­тенсивно расщепляться, т. к. в этом отрезке кишечника зна­чение рН среды нейтральное или даже слабо щелочное, и сюда дополнительно поступает α-амилаза поджелудочной железы. Гликозидные связи, находящиеся в точках ветвле­ния гликогена и амилопектина (1-6 связи) гидролизуются; амило-1,6-глюкозидазой и олиго-1,6-глюкозидазой.

Если от гликогена в желудочно-кишечном тракте отщеп­ляется мальтоза, то она под влиянием мальтазы расщепля­ется на 2 молекулы глюкозы .

Лактоза молока расщепляется под влиянием лактазы на глюкозу и галактозу .

Если с пищей попадает сахароза, то она под влиянием сахаразы расщепляется на молекулы фруктозы и глюкозы.

В конечном итоге все поступившие с пищей поли-, олиго- и дисахара гидролизуются (переварива­ются) до моносахаров- преимущественно до глюкозы, фруктозы и галактозы. Далее все они при активном участии АТФ, ионов натрия, ферментов и других молекул переносят­ся из просвета кишечника в клетки слизистой оболочки (облегченная диффузия, симпорт).

Углеводы, которые не перевариваются в ЖКТ: клетчатка, пектины, лигнины. В ЖКТ нет ферментов, гидролизующих β-1-4-гликозидную связь. Биологическая роль клетчатки (целлюлозы): среда бактериальной флоры, стимулирует перистальтику кишечника, является основой фекалиев и адсорбентом различных токсинов.

Судьба всосавшихся моносахаров различна. Полагают, что более 90% их попадает в печень и там превращает­ся в гликоген. В состав гликогена может включаться толь­ко глюкоза, а фруктоза и галактоза-нет. В связи с этим, по­следние в цитоплазме клеток кишечника изомеризуются и превращаются в глюкозу.

Пути, по которым начнутся дальнейшие превращения этих молекул, многочисленны: это аэробное и анаэробное окисление, использование их для био­синтеза заменимых аминокислот, гликозамигликанов, рибозы и дезоксирибозы, высших жирных кислот, гли­когена; а также многих других важных для организма веществ.

Гликоген - основной резервный полисахарид в клетках животных. Остатки глюкозы соединены в линейных участках α-1-4-гликозидными связями, в местах разветвления α-1-6- гликозидными связями. Гликоген депонируется главным образом в печени и скелетных мышцах. Гликоген синтезируется в период пищеварения (1-2 часа после приема углеводной пищи). Синтез гликогена идет с затратой энергии, сопряженной с расходованием АТФ и УТФ. Синтез гликогена стимулирует гормон инсулин.

Мобилизация гликогена происходит в период между приемами пищи, во время физической нагрузки и при стрессе. Этот процесс происходит в результате каскадного механизма активации фермента фосфорилазы b под действием гормона адреналина и глюкагона. Гликоген печени освобождает глюкозу в кровь, т.к., в отличие от мышц, в печени функционирует фермент глюкозо-6-фосфатаза. Глюкозо-6-фосфат мышц используется для получения энергии.

Биосинтез гликогена происходит после приема пищи, в условиях повышенной концентрации глюкозы в крови с целью ее депонирования. Особой интенсивностью этого процесса отличаются печень и мышцы. Регуляторным ферментом является гликогенсинтетаза, активность которой повышается под действием инсулина.

Взаимопревращения сахаров - это процесс трансформации фруктозы и галактозы в глюкозу или ее производные. Существует несколько вариантов преобразования фруктозы и галактозы в глюкозу в зависимости от типа ткани и возраста.

Пути метаболизма и использования глюкозы в организме у человека многочисленны. Направления, по которым будет катаболизироваться глюкоза, зависят от вида клеток (анаэробы, аэробы или факультативные клетки), условий их существования в окружающей среде, а также от потребностей органов и тканей в различных соединениях, способных синтезироваться из углеводов.

У человека глюкоза катаболизируется преимущественно в аэробных условиях, т. е. при наличии в клетке кислорода. Путь окисле­ния углеводов в аэробных условиях более выгоден с энер­гетической точки зрения, так как каждый моль глюкозы при этом обеспечивает образование приблизительно 686 ккалорий. При катаболизме того же количества глюкозы по ана­эробному пути освобождается всего 47 ккалорий. Однако, анаэробный путь превращения глюкозы крайне важен для организма человека. При недостатке кислорода большинство органов и тканей функционирует некоторое время лишь бла­годаря усилению скорости анаэробного гликолиза. Некоторые ткани находятся в наибольшей зависимости от катаболизма глюкозы, как источника энергии (например, клетки мозга). Недостаточное снабжение мозга глюкозой или гипоксия проявляются головокружением, судорогами, потерей сознания.