Где находится островки лангерганса. Гистологическое строение поджелудочной железы

Человеческий организм – разумный и достаточно сбалансированный механизм.

Среди всех известных науке инфекционных заболеваний, инфекционному мононуклеозу отводится особое место...

О заболевании, которое официальная медицина называет «стенокардией», миру известно уже достаточно давно.

Свинкой (научное название – эпидемический паротит) называют инфекционное заболевание...

Печеночная колика является типичным проявлением желчнокаменной болезни.

Отек головного мозга – это последствия чрезмерных нагрузок организма.

В мире не существует людей, которые ни разу не болели ОРВИ (острые респираторные вирусные заболевания)...

Здоровый организм человека способен усвоить столько солей, получаемых с водой и едой...

Бурсит коленного сустава является широко распространённым заболеванием среди спортсменов...

Клетки лангерганса поджелудочной железы какой секреции

Эндокринная функция поджелудочной железы

  • Островки Лангерганса
  • Глюкагон
  • Соматостатин
  • Инсулин

Поджелудочная железа выполняет разные функции. Одна из них эндокринная, то есть этот орган вырабатывает гормоны. Такая функция поджелудочной железы обеспечивается специальными клетками, которые предназначены именно для этого.

Островки Лангерганса

Эндокринная функция поджелудочной железы обеспечивается работой скопления клеток, имеющих эпителиальное происхождение. Эти скопления называют островками Лангерганса, они составляют 1-2% от всего органа. Количество таких островков в железе у взрослого человека от двухсот тысяч до полутора миллионов. Клетки островков Лангерганса бывают трех видов и продуцируют различные гормоны.

Типы клеток и гормоны, которые они продуцируют:

  • Альфа-клетки - глюкагон,
  • Бета-клетки - инсулин,
  • Дельта-клетки - соматостатин.

Глюкагон

Альфа-клетки поджелудочной железы вырабатывают глюкагон. Этот гормон отвечает за многие процессы:

  • способствует увеличению сердечного выброса,
  • расширяет артериолы,
  • уменьшает выработку некоторых ферментов и гормонов,
  • увеличивает образование инсулина, кальцитонина, соматотропного гормона, выделение жидкости с мочой.

Соматостатин

Данный гормон вырабатывают дельта-клетки островков Лангерганса поджелудочной железы. Его биологическая роль - подавлять секрецию соматотропного гормона, глюкагона, инсулина и некоторых других гормонов, а также электролитов, панкреатических ферментов, желудочного сока. Кроме того, под воздействием этого гормона замедляются кровоток внутренних органов, перистальтика кишечника, а также возбудимость нервных окончаний. Таким образом, за счет увеличения или уменьшения количества соматостатина регулируется необходимый уровень других гормонов и работа некоторых внутренних органов.

Инсулин

О гормоне инсулин, который вырабатывается бета-клетками поджелудочной железы, знают очень многие. Он нужен нам для расщепления глюкозы и выработки энергии в организме. Продукция этого гормона обеспечивается за счет взаимодействия глюкозы с различными рецепторами, в реакции участвуют также некоторые аминокислоты.

Основное влияние инсулин в нашем организме оказывает на углеводный обмен. Под его воздействием увеличивается транспорт глюкозы в клетки тканей, которые являются инсулинозависимыми. Это ткани печени, мышц, а также жировая ткань. Непосредственного действия на нервные ткани, почки инсулин не оказывает, однако нарушение баланса сахара в крови при недостатке или избытке инсулина может оказать разрушительное действие на все органы.

Кроме регуляции углеводного обмена, инсулин участвует и в других видах обмена. К примеру, он стимулирует транспорт аминокислот через клеточные мембраны, участвует в синтезе белка и тормозит его распад. При регуляции жирового обмена за счет количества инсулина происходит включение жирных кислот в жировую ткань, корректируется синтез липидов и липолиз.

Инсулин способен связываться с особыми рецепторами клеточной мембраны. После их соединения сигнал передается в систему цАМФ через фермент оболочки клетки аденилатциклазу. Эта система регулирует синтез белка и отвечает за утилизацию глюкозы.

Все гормоны важны для поддержания функций организма. Однако в энергетическом балансе основная роль принадлежит инсулину и глюкагону.

Именно эти гормоны помогают поддерживать энергию на определенном уровне. За счет увеличения и уменьшения продукции то одного из этих гормонов, то другого организм обеспечивает нормальный уровень сахара. Если происходит нарушение способности клеток островков Лангерганса продуцировать эти гормоны, или существенно уменьшается их количество, в организме могут быть серьезные сбои и развиваться заболевания.

moyaschitovidka.ru

Поджелудочная железа (островковый аппарат)

Эндокринная часть поджелудочной железы представлена островками секреторных клеток (островками Лангерганса), расположенными между экзокринными ацинусами (см. Атл.). Больше островков в хвостовой части железы. Общее их число - 1-2 млн и более, но все же их объем не превышает 3% объема железы. Островки бывают овальной, лентовидной или звездчатой формы. С возрастом количество островков уменьшается.

Обновление клеток островкового аппарата происходит за счет медленного их деления. При избытке углеводов в рационе человека и животных клетки, вырабатывающие инсулин, испытывают повышенную нагрузку. В результате такой гиперфункции начинается их гибель. Вследствие этого развивается заболевание, названное сахарным диабетом. Инсулин и глюкагон участвуют во всех видах обмена веществ.

Выделяют четыре основных типа эндокринных клеток поджелудочной железы, каждый из которых синтезирует один определенный гормон:

  • альфа-клетки, составляют 15-20% от всех клеток островка, вырабатывают гормон глюкагон;
  • бета-клетки, составляют 60-80% от общего количества клеток островка Лангерганса, производят гормон инсулин. Количество бета-клеток в поджелудочной железе непостоянно - с возрастом клетки разрушаются, а количество новообразованных клеток из экзокринной части поджелудочной железы уменьшается;
  • дельта-клетки, занимают 5-10% от общей площади клеток островка Лангерганса и вырабатывают гормон соматостатин;
  • F или РР-клетки, в незначительном количестве находятся по краям островка Лангерганса и производят панкреатический полипептид.

Дифференцировка клеток, синтезирующих инсулин и глюкагон, происходит в течение 3 месяцев внутриутробного развития, на 12 неделе проявляется их секреторная активность, а к концу 5 месяца островки Лангерганса приобретают характерное для взрослых строение.

Инсулин совместно с гормоном роста регулирует ростовые процессы: его концентрация повышается в периоды интенсивного роста и после рождения.

doctor-v.ru

Островковый аппарат поджелудочной железы

В эндокринной части паренхимы поджелудочной железы располагаются островки Лангерганса. Их основными структурными единицами являются секреторные (α, β, Δ, F и другие) клетки.

А-клетки (α-клетки) островков продуцируют глюкагон. Он увеличивает гликогенолиз в печени, снижает в ней утилизацию глюкозы, а также повышает глюконеогенез и образование кетоновых тел. Результатом этих воздействий является увеличение концентрации глюкозы в крови. Вне печени глюкагон повышает липолиз и снижает синтез белков.

На -клетках имеются рецепторы, которые при уменьшении уровня глюкозы во внеклеточной среде усиливают секрецию глюкагона. Секретин угнетает продукцию глюкагона, а другие желудочно-кишечные гормоны стимулируют ее.

B-клетки (-клетки) синтезируют и накапливают инсулин. Этот гормон увеличивает проницаемость клеточных мембран для глюкозы и аминокислот, а также способствует превращению глюкозы в гликоген, аминокислот в белки, а жирных кислот в триглицериды.

Синтезирующие инсулин клетки способны реагировать на изменения содержания в крови и просвете ЖКТ калоригенных молекул (глюкозы, аминокислот и жирных кислот). Из аминокислот наиболее выражена стимуляция секреции инсулина аргинином и лизином.

Поражение островков Лангерганса приводит к гибели животного из-за нехватки в организме инсулина. Только этот гормон снижает содержание глюкозы в крови.

Д-клетки (Δ-клетки) островков синтезируют панкреатический соматостатин. В поджелудочной железе он оказывает тормозящее паракринное влияние на секрецию гормонов островками Лангерганса (преобладает влияние на -клетки), а внешнесекреторным аппаратом - бикарбонатов и ферментов.

Эндокринное влияние панкреатического соматостатина проявляется торможением секреторной активности в ЖКТ, аденогипофизе, паращитовидной железе и почках.

Наряду с секрецией, панкреатический соматостатин снижает сократительную активность желчного пузыря и желчных протоков, а на всем протяжении ЖКТ - уменьшает кровообращение, моторику и всасывание.

Активность Д-клеток возрастает при высоком содержании в просвете пищеварительного тракта аминокислот (особенно лейцина и аргинина) и глюкозы, а также при увеличении концентрации в крови ХКП, гастрина, желудочного ингибирующего полипептида (ЖИП) и секретина. В то же время, норадреналин угнетает высвобождение соматостатина.

Панкреатический полипептид синтезируется F-клетками (или РР-клетками) островков. Он уменьшает объем панкреатического секрета и концентрацию в нем трипсиногена, а также тормозит выведение желчи, но стимулирует базальную секрецию желудочного сока.

Выработка панкреатического полипептида стимулируется парасимпатической нервной системой, гастрином, секретином и ХКП, а также при голодании, приеме богатого белками корма, гипогликемии и физической нагрузке.

Интенсивность выработки гормонов поджелудочной железы контролируется вегетативной нервной системой (парасимпатические нервы вызывают гипогликемию, а симпатические - гипергликемию). Однако основными факторами регуляции секреторной активности клеток в островках Лангерганса, являются концентрации питательных веществ в крови и просвете ЖКТ. Благодаря этому, своевременные реакции клеток островкового аппарата обеспечивают поддержание постоянного уровня питательных веществ в крови между приемами корма.

ЭНДОКРИННАЯ ФУНКЦИЯ ПОЛОВЫХ ЖЕЛЕЗ

После наступления половой зрелости основными источниками половых гормонов в организме животных становятся постоянные половые железы (у самцов - семенники, а у самок - яичники). У самок периодически могут появляться и временные эндокринные железы (например, плацента во время беременности).

Половые гормоны делят на мужские (андрогены) и женские (эстрогены).

Андрогены (тестостерон, андростендион, андростерон и др.) специфически стимулируют рост, развитие и функционирование органов размножения самцов, а с наступлением половой зрелости - образование и созревание мужских половых клеток.

Еще до рождения в организме плода формируются вторичные половые признаки. Это в значительной степени регулируется образующимися в семенниках андрогенами (секретируются клетками Лейдига) и фактором, секретируемым клетками Сертоли (находятся в стенке семенного канальца). Тестостерон обеспечивает дифференцировку наружных половых органов по мужскому типу, а секрет клеток Сертоли предотвращает образование матки и маточных труб.

В период полового созревания андрогены ускоряют инволюцию тимуса, а в других тканях стимулируют накопление питательных веществ, синтез белка, развитие мышечной и костной ткани, повышают физическую работоспособность и сопротивляемость организма неблагоприятным воздействиям.

Андрогены влияют на ЦНС (например, вызывают проявления полового инстинкта). Поэтому удаление половых желез (кастрация) у самцов делает их спокойными и может привести к нужным для хозяйственной деятельности изменениям. Например, кастрированные животные быстрее откармливаются, мясо их вкуснее и нежнее.

До рождения, секреция андрогенов обеспечивается совместным действием на плод ЛГ самки и хорионического гонадотропина (ХГ). После рождения, развитие семенных канальцев, спермиев и сопровождающую эти процессы выработку БАВ клетками Сертоли стимулирует собственный гонадотропин самца - ФСГ, а ЛГ вызывает секрецию тестостерона клетками Лейдига. Старение сопровождается угасанием активности половых желез, но продолжается выработка половых гормонов надпочечником.

К видовым особенностям клеток Сертоли семенников жеребца, быка и кабана относится их способность кроме тестостерона вырабатывать эстрогены, которые регулируют обмен веществ в половых клетках.

Яичники в организме половозрелой самки в соответствии со стадиями полового цикла вырабатывают эстрогены и гестагены. Основным источником эстрогенов (эстрона, эстрадиола и эстриола) являются фолликулы, а гестагенов - желтое тело.

У неполовозрелой самки эстрогены надпочечников стимулируют развитие репродуктивной системы (яйцеводов, матки и влагалища) и вторичных половых признаков (определенного телосложения, молочных желез и т.д.). После наступления половой зрелости, концентрация в крови женских половых гормонов значительно повышается за счет их интенсивной выработки яичниками. Возникающие при этом уровни эстрогенов стимулируют созревание половых клеток, синтез белков и образование мышечной ткани в большинстве внутренних органов самки, а также повышают сопротивляемость ее организма к вредным воздействиям и вызывают связанные с половыми циклами изменения в органах животного.

Высокие концентрации эстрогена вызывают рост, расширение просвета и усиление сократительной активности яйцеводов. В матке они повышают кровенаполнение, стимулируют размножение клеток эндометрия и развитие маточных желез, а также изменяют чувствительность миометрия к окситоцину.

У самок многих видов животных эстрогены вызывают ороговение клеток влагалищного эпителия перед течкой. Поэтому качество гормональной подготовки самки к спариванию и овуляции выявляют по цитологическим анализам вагинального мазка.

Эстрогены также способствуют формированию состояния «охоты» и соответствующих половых рефлексов в наиболее благоприятную для оплодотворения стадию полового цикла.

После овуляции, на месте бывшего фолликула образуется желтое тело. Вырабатываемые им гормоны (гестагены) влияют на матку, молочные железы и ЦНС. Они вместе с эстрогенами регулируют процессы зачатия, имплантации оплодотворенной яйцеклетки, вынашивания беременности, родов и лактации. Основным представителем гестагенов является прогестерон. Он стимулирует секреторную активность маточных желез и делает эндометрий способным реагировать на механические и химические воздействия разрастаниями, которые необходимы для имплантации оплодотворенной яйцеклетки и образования плаценты. Прогестерон также снижает чувствительность матки к окситоцину и расслабляет ее. Поэтому преждевременное снижение концентрации гестагенов в крови беременных самок вызывает роды до полного созревания плода.

Если беременность не наступила, то желтое тело подвергается инволюции (продукция гестагенов прекращается) и начинается новый овариальный цикл. Умеренные количества прогестерона в синергизме с гонадотропинами стимулируют овуляцию, а большие - тормозят секрецию гонадотропинов и овуляция не происходит. Небольшие количества прогестерона также необходимы для обеспечения течки и готовности к спариванию. Кроме этого, прогестерон участвует в формировании доминанты беременности (гестационной доминанты), направленной на обеспечение развития будущего потомства.

После воздействия эстрогенов, прогестерон способствует развитию железистой ткани в молочной железе, что приводит к формированию в ней секреторных долек и альвеол.

Наряду со стероидными гормонами желтое тело, эндометрий и плацента, преимущественно перед родами, продуцируют гормон релаксин. Его выработка стимулируется высокими концентрациями ЛГ и вызывает повышение эластичности лонного сочленения, расслабление связки тазовых костей, а непосредственно перед родами повышает чувствительность миометрия к окситоцину и вызывает расширению маточного зева.

Плацента возникает в несколько этапов. Сначала, в ходе дробления оплодотворенной яйцеклетки образуется трофобласт. После присоединения к нему внезародышевых кровеносных сосудов трофобласт превращается в хорион, который после плотного соединения с маткой становится сформировавшейся плацентой.

У млекопитающих плацента обеспечивает прикрепление, иммунологическую защиту и питание плода, выведение продуктов обмена, а также выработку гормонов (эндокринная функция), необходимых для нормального течения беременности.

Уже на ранних сроках беременности в местах прикрепления ворсинок хориона к матке вырабатывается хорионический гонадотропин. Его появление ускоряет развитие зародыша и предотвращает инволюцию желтого тела. Благодаря этому желтое тело поддерживает высокий уровень прогестерона в крови до тех пор, пока плацента сама не начнёт синтезировать его в необходимом количестве.

Вырабатываемые в организме беременных самок негипофизарные гонадотропины имеют видовые особенности, но могут влиять на репродуктивные функции и у других видов животных. Например, введение гонадотропина сыворотки крови жеребых кобыл (ГСЖК) вызывает у многих млекопитающих выделение прогестерона. Это сопровождается удлинением полового цикла и задерживает приход охоты. У коров и овец ГСЖК также вызывает одновременный выход нескольких зрелых яйцеклеток, что используется при трансплантации эмбрионов.

Плацентарные эстрогены вырабатываются плацентой большинства млекопитающих (у приматов - эстрон, эстрадиол и эстриол, а у лошади - эквилин и эквиленин) преимущественно во второй половине беременности из дегидроэпиандростерона образующегося в надпочечниках плода.

Плацентарный прогестерон у ряда млекопитающих (приматы, хищники, грызуны) секретируются в количествах достаточных для нормального вынашивания плода даже после удаления желтых тел.

Плацентарный лактотропин (плацентарный лактогенный гормон, плацентарный пролактин, хорионический соматомаммотропин) поддерживает рост плода, а у самки увеличивает синтез белка в клетках и концентрацию СЖК в крови, стимулирует рост секреторных отделов молочных желёз и их подготовку к лактации, а также задерживает в организме ионы кальция, снижает мочевую экскрецию фосфора и калия.

По мере увеличения сроков беременности в крови самок растет уровень плацентарного кортиколиберина, который увеличивает чувствительность миометрия к окситоцину. Данный либерин практически не влияет на секрецию АКТГ. Это связано с тем, что во время беременности в крови растет содержание белка, который быстро нейтрализует кортиколиберин и он не успевает подействовать на аденогипофиз.

Тимус (зобная или вилочковая железа) имеется у всех позвоночных животных. У большинства млекопитающих он состоит из двух соединенных друг с другом долей, расположенных в верхней части грудной клетки сразу за грудиной. Однако, у сумчатых животных эти доли тимуса обычно остаются отдельными органами. У пресмыкающихся и птиц железа обычно имеет вид цепочек, расположенных по обе стороны шеи.

Наибольших размеров по отношению к массе тела тимус большинства млекопитающих достигает к моменту рождения. Затем он медленно растет и в период полового созревания достигает максимальной массы. У морских свинок (и некоторых других видов животных) крупный тимус сохраняется на протяжении всей жизни, но у большинства высокоразвитых животных после полового созревания железа постепенно уменьшается (физиологическая инволюция), но полной атрофии ее не происходит.

В тимусе эпителиальные клетки продуцируют тимические гормоны влияющие эндокринным и паракринным путем на гемопоэз, а также дифференцировку и активность Т-клеток.

В тимусе на предшественники Т-лимфоцитов последовательно действуют тимопоэтин и тимозины. Они делают дифференцирующиеся в тимусе клетки чувствительными к активированному кальцием тимулину (или тимическому сывороточному фактору - ТСФ).

П р и м е ч а н и е: Возрастное снижение содержания ионов кальция в организме является причиной падения активности тимулина у старых животных.

Секреторная активность тимуса тесно связана с деятельностью гипоталамуса и других эндокринных желез (гипофиза, эпифиза, надпочечников, щитовидной железы и гонад). Гипоталамический соматостатин, удаление надпочечников и щитовидной железы снижают выработку тимических гормонов, а эпифиз и кастрация усиливают гормонопоэз в тимусе. Кортикостероиды регулируют распределение тимических гормонов между тимусом, селезенкой и лимфоузлами, а тимэктомия приводит к гипертрофии коры надпочечников.

Перечисленные примеры свидетельствуют о том, что вилочковая железа обеспечивает интеграцию нейро-эндокринной и иммунной систем в целостном макроорганизме.

Эпифиз (шишковидная железа) расположена у позвоночных под кожей головы или в глубине мозга. Основными клетками эпифиза у млекопитающих являются пинеалоциты, а у более примитивных животных здесь имеются и фоторецепторы. Поэтому, наряду с эндокринной функцией эпифиз может обеспечивать ощущение степени освещенности объектов. Это позволяет глубоководным рыбам осуществлять вертикальную миграцию в зависимости от смены дня и ночи, а миногам и пресмыкающимся - оберегать себя от опасности сверху. У некоторых перелетных птиц эпифиз, вероятно, выполняет функцию навигационных приборов при перелетах.

Эпифиз земноводных уже способен вырабатывать гормон мелатонин, который уменьшение количество пигмента в клетках кожи.

Пинеалоциты непрерывно синтезируют гормон серотонин, который в темное время суток и при низкой активности симпатической нервной системы (у птиц и млекопитающих) превращается в мелатонин. Поэтому продолжительность дня и ночи, влияют на содержание этих гормонов в эпифизе. Возникающие при этом ритмические изменения их концентрации в шишковидной железе определяют у животных суточный (циркадианный) биологический ритм (например, периодичность сна и колебания температуры тела), а также влияет на формирование таких сезонных реакций как зимняя спячка, миграция, линька и размножение.

Увеличение содержания мелатонина в эпифизе оказывает снотворный, анальгезирующий и седативный эффекты, а также тормозит половое созревание молодняка. Поэтому после удаления эпифиза у цыплят быстрее наступает половое созревание, у самцов млекопитающих - гипертрофируются семенники и усиливается созревание спермиев, а у самок - удлиняется период жизни желтых тел и увеличивается матка.

Мелатонин снижает секрецию ЛГ, ФСГ, пролактина и окситоцина. Поэтому низкий уровень мелатонина в светлое время суток способствует усилению молокообразования и высокой половой активности животных в те времена года, когда ночи наиболее короткие (весной и летом). Мелатонин также нейтрализует повреждающее действие стрессоров и является естественным антиоксидантом.

У млекопитающих серотонин и мелатонин выполняют свои функции в основном в эпифизе, а дистантными гормонами железы, вероятно, являются полипептиды. Значительная их часть наряду с кровью, секретируется в спинномозговую жидкость и через нее поступает в различные отделы ЦНС. Это оказывает преимущественно тормозное влияние на поведение животного и другие функции мозга.

В эпифизе уже обнаружено около 40 секретирующихся в кровь и спиномозговую жидкость биологически активных пептидов. Из них наиболее изучены антигипоталамические факторы и адреногломерулотропин.

Антигипоталамические факторы обеспечивают связь эпифиза с гипоталамо-гипофизарной системой. К ним, например, относятся аргинин-вазотоцин (регулирует секрецию пролактина) иантигонадотропин(ослабляет секрецию ЛГ).

Адреногломерулотропин стимулируя выработку альдостерона надпочечником, влияет на водно-солевой обмен.

Таким образом, основной функцией эпифиза является регуляция и координация биоритмов. Посредством контроля деятельности нервной и эндокринной систем животного, шишковидная железа обеспечивает опережающую реакцию его систем на смену времени суток и сезона.

studfiles.net

ПАТОЛОГИЯ ОСТРОВКОВОГО АППАРАТА ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ (ОСТРОВКОВ ЛАНГЕРГАНСА)

Поджелудочная (панкреатическая) железа относится к органам с двойной секрецией. Внешнесекреторный аппарат железы выра­батывает составные части панкреатического сока, экскретируемо-го в двенадцатиперстную кишку. Около 1,5-2% массы железы приходится на эндокринную ткань (островки Лангерганса) - группы скоплений специальных паренхиматозных клеток. Крово­снабжение поджелудочной железы осуществляется поджелудочно-двенадцатиперстной артерией и ветвями селезеночной артерии, причем кровоснабжение островков Лангерганса существенно обильнее, чем других частей органа. Вены поджелудочной железы впадают в воротную вену через селезеночную или верхнюю бры­жеечную вену. Иннервируется железа ветвями блуждающего и симпатического нервов.

В островках Лангерганса имеется несколько видов клеток: β-клетки, расположены ближе к центру островков и составляют до 60-70 % всех клеток; δ-клетки (2-8 %) - предшественники дру­гих клеток островков и α-клетки (около 25 %), находятся ближе к периферии островков. Протоплазма α- и β-клеток содержит гра­нулы, а δ-клетки негранулированы. α-Клетки неаргирофильны и являются местом образования глюкагона; β-клетки образуют инсу­лин, δ-клетки - соматотропин. РР-клетки, также имеющиеся в железе, расположены по периферии островков и в паренхиме воз­ле протоков малого и среднего диаметра. Они секретируют панк­реатический полипептид. В островках выявлено некоторое коли­чество клеток - продуцентов вазоактивного интерстициального пептида (ВИП) и гастроинтерстициального пептида (ГИП).

Инсулин - низкомолекулярный белок с молекулярной массой около 6000 Д. В его состав входит 16 аминокислот и 51 аминокис­лотный остаток. В настоящее время синтезирован искусственным путем. Он образуется из проинсулина под влиянием протеаз; его активность составляет около 5 % активности инсулина. Считается, что биологический эффект инсулина связан с его способностью соединяться со специфическими рецепторами цитоплазматических мембран клеток, после чего передается сигнал на систему цАМФ через фермент аденилатциклазу оболочки клетки цАМФ, который регулирует синтез белка и утилизацию глюкозы при учас­тии Са++ и Мg++.

С кровью инсулин поступает в печень, где около половины его инактивируется под воздействием инсулиназы, а остальная часть связывается с белками, частично оставаясь свободной.

Из печени инсулин поступает в кровь в свободном и связан­ном с белками состоянии. Это соотношение регулируется уров­нем гликемии. При понижении сахара в крови преобладает белковосвязанная фракция, а при гипергликемии - свободный инсулин, который действует на инсулиночувствительные субстан­ции, а связанная фракция - только на жировую ткань, в которой имеются пептидазы, освобождающие инсулин из связанного со­стояния. Период полураспада инсулина - около 30 мин. Инсу­лин кроме печени инактивируется в жировой ткани, мышцах, почках, плаценте.

Основным биостимулятором синтеза инсулина является глю­коза, под влиянием которой в поджелудочной железе синтез инсу­лина повышается, а с уменьшением ее - снижается.

Стимуляторами освобождения и секреции инсулина являются также СТГ, АКТЕ, глюкокортикоиды, глюкагон, секретин, арги­нин, лейцин, гастрин, бомбезин, панкреозимин, желудочный ин­гибитор - полипептид, нейротензин, β-адреностимуляторы, суль­фаниламиды, соматостатин.

Соматостатин - 14-членный пептид, обнаружен в гипоталаму­се, образуется также в δ-клетках островков Лангерганса, клетках щитовидной железы, желудка и лимфоидных органов. Он подав­ляет секрецию ТТГ, СТГ, АКТГ, гастрина, секретина, мотилина, ренина, вазоактивного желудочного пептида (ВЖП), панкреати­ческих ферментов, желудочного сока; снижает перистальтику кишечника, сократимость мочевого пузыря, абсорбцию ксилозы. Под его влиянием уменьшается освобождение ацетилхолина из нервных окончаний и электровозбудимость нервов. Является ин­гибитором секреции инсулина и глюкагона. Парасимпатическая стимуляция увеличивает секрецию инсулина, а симпатическая - уменьшает. Важную роль в секреции инсулина играют холинэргитические волокна блуждающего нерва.

Инсулинстимулирует перенос Сахаров через мембрану клеток жировой, мышечной, почечной тканей; усиливает фосфорилирование, окисление и превращение глюкозы в гликоген и жиры; способствует превращению жирных кислот в триглицириды жи­ровой ткани; стимулирует синтез липидов; ингибирует липолиз и активность глюкозо-6-фосфатазы; стимулирует образование макроэргических связей, транспорт аминокислот через цитоплазматические мембраны; ослабляет глюкогенолиз из белка; способ­ствует его синтезу из аминокислот. Все ткани, кроме нервной, сетчатки, почечной и эритроцитов, чувствительны к инсулину.

Глюкагонявляется антагонистом инсулина. Это полипептид, состоящий из 29 аминокислотных остатков с молекулярной мас­сой 3485 Д. Он усиливает распад гликогена в печени и тормозит его синтез; усиливает липолиз, гликонеогенез, биосинтез глюкозы из аминокислот; способствует снижению кальциемии и фосфатемии, выходу калия из печени, отчего наступает значительная, но скоротечная гиперкалиемия, сменяющаяся затем гипокалиемией, которая обусловлена гиперкалийурией и усилением депонирова­ния калия клетками.

Секреция глюкагона снижается при гипергликемии, повышении в крови свободных жирных кислот и под влиянием соматостатина.

Глюкагон тормозит агрегацию тромбоцитов, способствует уве­личению минутного объема кровотока. Под его влиянием увели­чивается образование СТГ, инсулина, катехоламинов, кальцитонинов, выделение воды и электролитов с мочой, а секреция панк-реозимина, гастрина, панкреатических ферментов снижается.

Кроме панкреатического глюкагона известен также кишечный глкжагон, секретируемый α-клетками слизистой оболочки желуд­ка и кишечника. Он усиливает липолиз, гликогенолиз, стимули­рует секрецию инсулина. Секреция кишечного глюкагона повы­шается при поступлении в кишечник пищи и соединений каль­ция.

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

И УГЛЕВОДНЫЙ ОБМЕН

Углеводы являются основным энергетическим материалом, ре­ализующимся при распаде глюкозы в цикле Кребса (аэробном цикле трикарбоновых кислот) на Н2О и СО2. Образование глико­гена из моно- и дисахаридов, гексоз и пентоз происходит под вли­янием инсулина, а основное количество углеводов у жвачных рас­щепляется в преджелудках под воздействием микрофлоры до ЛЖК, а у моногастричных - в тонком кишечнике под влиянием ферментов поджелудочной железы (мальтазы, амилазы, лактазы) до моносахаридов. Более 85 % моносахаридов переходят в глюкозу уже в тонком кишечнике и около 15 % - в печени. В процессах фосфорилирования глюкоза является активным звеном окисле­ния, синтеза гликогена и жира. На первом этапе фосфорилирова­ния образуется гексозомонофосфат:

глюкоза + АТФ -> гексакиназа -> гексозомонофосфат + АДФ.

Особенностью этого превращения является то, что к молекуле глюкозы присоединяется не простая (неорганическая), а обога­щенная энергией фосфорная кислота (макроэргическая связь), что делает глюкозу биологически активной, причем активатором гексокиназы в этом процессе является инсулин. Проникая через стенку кишечника и под влиянием фосфатазы дефосфорилируясь, глюкоза поступает в портальное кровообращение, теряя физиоло­гическую активность. В печени она вторично фосфорилируется, образуя глюкозо-6-фосфат (Г-6-Ф), становясь снова физиологи­чески активной под действием инсулина, и образует гликоген. Значение этого цикла в том, что он является единственным источ­ником рибозо-5-фосфата, используемого в синтезе РНК. При окис­лении глюкозы в пентозном цикле образуется основная часть вос­становленного NАДН - никотинамидадениндинуклеотида, необходимого для синтеза жирных кислот. В анаэробном цикле окис­ляется около 25 % Г-6-Ф, а около 55 % под влиянием глкжозо-6-фосфатазы, освобождаясь от фосфорной кислоты, из печени пере­ходит в общий проток. 9 % из 55 (принятых за 100 %) этой глю­козы превращается в гликоген мышечной ткани, а около 30 % - в жир. Основная часть глюкозы (около 60 %) окисляется в тканях, обеспечивая энергетический баланс организма в анаэробном (с образованием молочной кислоты) и аэробном (с образованием Н2О и СО2) циклах. Молочная кислота в печени и мышцах может ресинтезироваться в гликоген, а образовавшаяся в аэробном гли­колизе пировиноградная кислота декарбоксилируется с образова­нием ацетилкоэнзима А (ацетил-КоА), который необходим в дальнейшем синтезе жирных кислот, кетоновых (ацетоновых) тел, холестерина. В цикле ди- и трикарбоновых кислот в легких, поч­ках, мышцах и частично в печени ацетил-КоА окисляется до Н2О и СО2, а катализатором этого процесса является инсулин. Аэроб­ный гликолиз является наиболее эффективным - в его процессе образуется 36 молекул аденозинтрифосфорной кислоты (АТФ), тогда как в анаэробном только две молекулы АТФ.

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

И ЛИПИДНЫЙ ОБМЕН

Основной резерв энергии организма - жиры. Из жировых депо жиры в виде свободных неэстерифицированных жирных кислот (НЭЖК) поступают в кровь, а затем в печень, где диализируются и используются тканями как энергетический материал. НЭЖК до­ставляют около 50 % тепловой энергии основного обмена.

Триглицериды жировых депо, поступая в кровь, образуют ком­плексы с α- и β-глобулинами и затем выходят из них в виде α- и β-липопротеидов. В норме жир в печени не задерживается, а откла­дывается в жировых депо. Этот процесс активируется гепарином, продуцируемым тучными клетками. Нормальными промежуточ­ными продуктами обмена НЭЖК являются ацетоновые (кетоно­вые) тела, содержание которых в крови здоровых животных со­ставляет в среднем 2-7 мг%. Кетоновые тела образуются в основ­ном в печени. Усиленный кетоногенез (при недостаточности аэробного цикла, энергетическом голодании) - причина ацетонемии, кетоза, являющихся причиной дистрофии внутренних орга­нов (миокарда, почек, печени), яловости, ацетонурии, ацетонолактии, «голодных» кетозов овец и свиней.

Непосредственно участвуют в обмене жиров фосфолипиды, способствующие окислению жира через стадию лецитина. Они же повышают устойчивость холестерина в крови, что препятствует его отложению в стенках сосудов.

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА

И БЕЛКОВЫЙ ОБМЕН

Более половины белков сыворотки крови (6-8 г%) составляют альбумины. Остальная часть их представлена α1-, α2-, β- и γ-глобулинами.

Альбумины синтезируются в паренхиматозных клетках печени, а глобулины - в ретинулоэндотелиальной системе (РЭС). Все пи­тательные вещества в процессе обмена между кровью и клетками тканей проходят через основное вещество соединительной ткани, важнейшими элементами которой являются коллагеновые и элас­тические волокна белковой природы. Из этого следует, что любой фактор или состояние, влияющие на обмен белка, оказывают воз­действие и на них.

Высокомолекулярные линейные полиэлектролиты соедини­тельной ткани называются кислыми мукополисахаридами, а в со­единении с белком - мукопротеидами (мукополисахаридными комплексами). В крови имеются также гликопротеиды - белки с содержанием около 4 % избытка глюкозамина.

Повышение белкового синтеза происходит под влиянием ин­сулина вследствие усиления переноса аминокислот в цитоплаз­му, активации ферментов пептидного цикла и усиления утилиза­ции глюкозы (источника энергии макроэргических связей). Наря­ду с инсулином синтез белка стимулирует соматотропный гормон гипофиза (СТГ). Наоборот, АКТЕ, ТТГ, глюкокортиноиды, гор­моны щитовидной железы стимулируют диализ белка до амино­кислот.

САХАРНЫЙ ДИАБЕТ

Сахарный диабет представляет собой синдром хронической ги­пергликемии вследствие генетических и экзогенных факторов на почве абсолютного или относительного дефицита инсулина, со­провождающийся нарушением промежуточного обмена, особенно углеводного. Принято выделять три пути развития инсулинзави-симого сахарного диабета: 1) предрасположенность к аутоиммун­ному нарушению островков Лангерганса; 2) повышенная чувствительность β-клеток к вирусам и 3) ослабление противови­русного иммунитета. Чаще возникает в критические перио­ды - максимального роста и продуктивности, гормональной, иммунологической и других видов перестройки.

Сахарный диабет может возникать вторично - при панкреати­тах, кистах, опухолях поджелудочной железы, гемохроматозах, особенно при эндокринных нарушениях других желез внутренней секреции, от ятрогенных причин, длительного применения диуре­тиков (особенно диазидов, кортикостероидов), при нарушениях кормления (длительное кормление турнепсом, брюквой, репой, капустой). Он чаще бывает вследствие относительной внепанкреатической инсулиновой недостаточности, чем абсолютной (панк­реатической).

Патогенез инсулинзависимого сахарного диабета связан с дест­рукцией β-клеток, что приводит к абсолютному недостатку инсу­лина - «вирусному» или аутоиммунному. Повреждение более 90 % клеток поджелудочной железы приводит к развитию клини­ческих симптомов диабета.

При дефиците инсулина понижается проницаемость для глю­козы цитоплазматических мембран в мышечной и жировой тка­нях, снижается ее фосфорилирование и окисление глюкозы, пере­ход в спирт, усиливается гликонеогенез из белка и выделение уг­леводов из печени в кровь. Это приводит к неполной утилизации углеводов тканями - гипергликемии. В крови повышается содер­жание молочной кислоты - продукта анаэробного гликолиза. Возникает глюкозурия, полидипсия, ацетонемия, гипергликемия, что приводит к повышению осмотического давления крови и на­рушению функций ЦНС. Нарушается липидный обмен (увеличе­ние содержания в крови НЭЖК). Печень подвергается жировой дистрофии. Возрастает холестеринемия. Снижение концентрации фосфолипидов, гиперхолестеринемия, повышение содержания β-липопротеидов при диабете предрасполагают к ангиопатиям, атеросклерозу. Липоидозу способствует уменьшение расщепления триглицеридов в стенке сосудов, нарушается синтез, усиливается распад белков. Содержание альбуминов снижается, α1-, β - и γ-глобулинов повышается, что связано как с недостатком инсулина, так и с недостаточностью гипофиза, надпочечников и половых желез. Это приводит к ретенционной азотемии и гиперазотурии. Нару­шение промежуточного обмена приводит к снижению сопротив­ляемости инфекциям, тяжелым ангиопатиям.

В клинической стадии на передний план выступают полидип­сия, полифагия, сухость слизистых ротовой полости, полиурия, ацетонурия, ацетонолактия, ацидоз, общая слабость, снижение и утрата продуктивных показателей, зудливость, сухость кожи, остеопороз, костно-суставная патология, изменения ЭКГ, протеинурия, ретинопатия, возможны гангрена конечностей, хвоста, нару­шение пищеварения, признаки нарушения функций ЦНС, гипергликемическая кома.

Для диагностики редких форм сахарного диабета применяют исследование «сахарной кривой» - динамики уровня сахара в крови после сахарной нагрузки. Чем медленнее возвращается уро­вень гликемии к исходному показателю (до сахарной нагрузки), тем сильнее выражен сахарный диабет.

На картинке рядом с текстом представлено обобщенное описание эндокринных клеток островка Лангерганса , без указания их реальной позиции внутри него. На рисунке показана также структура фенестрированных капилляров и присутствующих в околокапиллярном пространстве автономных нервных волокон (HB) и нервных окончаний (НО).


А-клетки (А) - аргирофильные полигональные элементы с глубоко инвагинированным ядром, заметным ядрышком и в основном хорошо развитыми органеллами. Несколько лизосом и пигментных гранул может также присутствовать в цитоплазме. Характерной особенностью А-клеток является наличие окруженных одинарной мембраной секреторных гранул (АСГ), достигающих около 300 нм в диаметре. Гранулы возникают из комплекса Гольджи (Г), их содержимое выбрасывается из тела клетки путем экзоцитоза. В течение этого процесса мембрана гранулы сливается с плазмолеммой А-клетки, ориентированной по направлению к капилляру (Кап). Гранула высвобождается между базальной мембраной (БМЭ) эндокринной клетки и собственно эндокринной клеткой. Только в этом узком пространстве находится содержимое гранул в форме видимых маленьких пузырьков. Это содержимое становится неразличимым в околокапиллярном пространстве (ОП), т. е. в пространстве между базальной мембраной эндокринной клетки и капиллярной базальной мембраной (БМК). А-клетки продуцируют глюкагон.


В-клетки (Б) - полигональные клетки с овальным и часто инвагинированным ядром и массивным ядрышком. Цитоплазма содержит хорошо развитый комплекс Гольджи (Г), большие многочисленные митохондрии, несколько коротких цистерн гранулярной эндоплазматической сети и рибосомы. Многочисленные секреторные гранулы (БСГ) диаметром около 200 нм, ограниченные одинарными мембранами, происходят из комплекса Гольджи. Гранулы содержат осмиофильное «ядро», в котором могут обнаруживаться один или несколько политональных кристаллов. Сначала гранулы достигают околокапиллярного пространства путем экзоцитоза, как описано для А-клеток, и затем - капилляров. В-клетки синтезируют инсулин.


D-клетки (Д) - овальные или полигональные клетки с округлым ядром и хорошо развитыми митохондриями и комплексом Гольджи (Г). Другие органеллы также ясно видимы. Из комплекса Гольджи выделяются окруженные одинарной мембраной секреторные гранулы (ДСГ) диаметром 220-350 нм, наполненные гранулярным, умеренно осмиофильным материалом, который экскретируется из тела клетки путем экзоцитоза, как описано для А-клеток. D-клетки продуцируют соматостатин и гастрин. Они являются типом APUD-клеток.


РР-клетки (ПП), или F-клетки , - эндокринные клетки островков Лангерганса , не только находящиеся в юкстадуоденальных панкреатических островках, но также ассоциированные с панкреатическими ацинарными клетками и клетками, выстилающими маленькие и среднего размера экскреторные протоки. РР-клетки имеют округлое или эллиптическое ядро, митохондрии, умеренно развитый комплекс Гольджи, короткие цистерны гранулярной эндоплазматической сети и большое количество маленьких, окруженных одинарной мембраной секреторных гранул (ППСГ) диаметром 140-120 нм с гомогенным содержимым. РР-клетки синтезируют панкреатические полипептиды.


Глюкагон - это гормон, который стимулирует печеночный глюконеогенез. Инсулин - гормон, стимулирующий получение клетками глюкозы (гепатоциты , скелетные мышечные волокна). Соматостатин - гормон, ингибирующий (подавляющий) освобождение глюкагона и гормона роста, а также панкреатическую секрецию. Панкреатический полипептид - это гормон, который тормозит панкреатическую экзокринную секрецию и продукцию желчи.

Поджелудочная железа считается одним из жизненно важных органов. Она не только активно участвует в процессе переваривания пищи, но и имеет эндокринные функции. Внутренняя секреция осуществляется благодаря специальным клеткам, расположенным в хвосте данного анатомического образования. Место, в котором вырабатываются гормоны поджелудочной железы, называется островок Лангерганса. Это анатомическое образование имеет огромное функциональное значение. Благодаря ему обеспечивается углеводный обмен.

Что такое островок Лангерганса: предназначение

Эндокринные клетки расположены по всему организму. Одним из мест их скопления является поджелудочная железа. Островки Лангерганса локализованы в хвостовой части органа. Они представляют собой клеточные скопления, вырабатывающие биологически активные вещества - гормоны. Значение островков Лангерганса огромное. Оно заключается в продукции нормального количества гормонов, необходимых для обменных процессов. Островки Лангерганса поджелудочной железы имеют следующие функции:

  1. Контроль гликемии.
  2. Регуляция активности ферментов.
  3. Участие в жировом обмене.

Благодаря нормальной работе островкового аппарата не развиваются такие состояния, как сахарный диабет и гипогликемия. Повреждение клеток возникает при острых и хронических воспалениях - панкреатитах.

Гистологическое строение островков

Островок Лангерганса был открыт в 19 веке. Он представляет собой сосредоточение эндокринных элементов. У детей эти образования занимают около 6 % от общей площади органа. К взрослому возрасту эндокринная часть уменьшается и составляет всего 2 %. В паренхиме хвоста находится около миллиона островков Лангерганса. Они имеют собственное обильное кровоснабжение и иннервацию. Каждый островок состоит из долек, которые покрывает соединительная ткань. Кроме того, она находится и снаружи эндокринных образований. Клетки внутри островков расположены в виде мозаики. Активность эндокринных скоплений обеспечивают блуждающий и симпатический нервы. В центре дольки располагаются инсулярные клетки. Они снижают уровень глюкозы в крови. В периферической части долек находятся альфа- и дельта-клетки. Первые вырабатывают контринсулярный гормон - глюкагон. Вторые необходимы для регуляции эндокринной и экзокринной активности.

Какие существуют клетки островков Лангерганса?

В островках Лангерганса вырабатывается несколько видов клеток. Все они участвуют в выделении биологически активных веществ - пептидов и гормонов. Большая часть островков Лангерганса представлена бета-клетками. Они располагаются в центре каждой дольки. Эти клетки очень важны, так как они вырабатывают инсулин.

Вторыми по значимости считаются альфа-клетки поджелудочной железы. Они занимают четверть площади островка. Альфа-клетки необходимы для продуцирования глюкагона. Этот гормон является антагонистом инсулина.

В периферийной части островков Лангерганса вырабатываются РР- и дельта-клетки. Количество первых составляет около 1/20 части. Функция данных образований - выработка полипептида поджелудочной железы. Дельта-клетки необходимы, чтобы продуцировать соматостатин. Данное вещество участвует в регуляции обмена углеводов.

Островковые клетки сложно поддаются регенеративным процессам. Поэтому при повреждении этих структур восстановить их функцию часто невозможно.

Гормональная активность островков Лангерганса

Несмотря на то, что островок Лангерганса имеет небольшой размер и занимает лишь малую часть поджелудочной железы, значение этого фрагмента велико. В нём происходит образование важнейших гормонов, участвующих в обменных процессах. Островки Лангерганса вырабатывают инсулин, глюкагон, соматостатин и панкреатический полипептид.

Первые 2 гормона необходимы для жизнедеятельности. Инсулин запускает процесс распада на глюкозы на более мелкие молекулярные соединения. В результате уровень сахара в крови снижается. Помимо этого инсулин участвует в обмене жиров. Благодаря действиям этого гормона в печени и мышечной ткани накапливается гликоген. Инсулин оказывает анаболический эффект на общий обмен веществ, то есть ускоряет все процессы.

Обратным действием обладает глюкагон. Этот гормон вырабатывается в меньшем количестве по сравнению с инсулином. Он участвует в глюконеогенезе. Сахар необходим в организме, так как является источником энергии.

Соматостатин регулирует выработку пищеварительных ферментов и гормонов. Под воздействием этого вещества снижается выработка глюкагона и инсулина. РР-клеток в островках Лангерганса очень мало, однако панкреатический полипептид для организма необходим. Он участвует в регуляции секреции пищеварительных желез (печени, желудка). При недостаточности гормональной активности развиваются тяжелые заболевания.

Поражение эндокринной части поджелудочной железы

Нарушение деятельности островковых клеток может произойти по разным причинам. Зачастую недостаточность этих структур относится к врожденным аномалиям (генетическим патологиям). Приобретённое поражение островков Лангерганса развивается вследствие вирусных и бактериальных инфекций, хронической алкогольной интоксикации, неврологических заболеваний.

Недостаточность инсулина приводит к сахарному диабету 1-го типа. Эта болезнь возникает в детском и молодом возрасте. Повышение глюкозы в крови приводит к поражению сосудов и нервов. При дефиците других островковых клеток развивается гипогликемическое состояние, повышенная продукция пищеварительных соков. Усиленная выработка гормонов возникает при доброкачественных опухолях хвоста поджелудочной железы.

Пересадка островков Лангерганса

Методом лечения сахарного диабета является заместительная терапия инсулином. В последние годы разрабатываются альтернативные способы. К ним относятся внедрение искусственной поджелудочной железы и пересадка островковых клеток. На практике оказалось, что гормонпродуцирующие структуры приживаются в новом организме. При этом углеводный обмен может полностью восстановиться. Пересадка островков Лангерганса еще не получила широкого применения в практике.

Одной из достаточно частых причин развития сахарного диабета является аутоиммунный процесс, при этом в организме вырабатываются антитела к клеткам островков Лангерганса, а именно к тем, которые вырабатывают инсулин. Это вызывает их разрушение и, как следствие, нарушение эндокринной функции поджелудочной железой с развитием инсулинозависимого диабета 1 типа.

Что такое островки Лангерганса?

Вся железа разделена на структурные единицы так называемые островки. У взрослого и физически здорового человека их насчитывается около 1 миллиона. Больше всего этих образований находится в хвостовой части органа. Каждый из этих панкреатических островков является сложной системой, отдельным функционирующим органом с микроскопическими размерами. Все они окружены соединительной тканью, в которую входят капилляры, и разделены на дольки. Антитела, вырабатываемые при сахарном диабете, чаще всего травмируют его центр, так как там расположено скопление бета-клеток.

Разновидности образований

Островки Лангерганса содержат набор клеток, которые выполняют жизненно важные для организма функции, а именно поддержание нормального уровня углеводов в крови. Это происходит за счет выработки гормонов, в том числе инсулина и его антагонистов. В состав каждого из них входят такие структурные единицы:

  • альфа;
  • бета-клетки;
  • дельта;
  • пп-клетки;
  • эпсилон.

Задача альфа и бета-клеток – продуцирование глюкагона и инсулина.

Основная функция активного вещества состоит в секреции глюкагона. Является антагонистом инсулина, и таким образом регулирует его количество в крови. Основную свою функцию гормон выполняет в печени, где контролирует выработку нужного количества глюкозы, путем взаимодействия со специфическим видом рецепторов. Это происходит за счет распада гликогена.

Главная цель бета-клеток - выработка инсулина, который непосредственно участвует в процессе запасания гликогена в печени и скелетных мышцах. Таким образом организм человека создает себе энергетические запасы на случай длительного отсутствия поступления питательных веществ. Механизмы выработки этого гормона запускаются после еды, в ответ на повышения в крови количества глюкозы. Рассматриваемые клетки островков Лангерганса составляют основную их массу.

Дельта и ПП-клетки

Эта разновидность встречается достаточно редко. Дельта-клеточные структуры составляют только 5-10% от общего количества. Их функция заключается в синтезе соматостатина. Этот гормон непосредственно подавляет выработку соматотропного, тиреотропного и соматотропин-рилизинг гормона, оказывая таким образом воздействие на переднюю долю гипофиза и гипоталамус.

В каждом из островков Лангерганса секретируется панкреатический полипептид, этот процесс происходит в пп-клетках. Функция этого вещества до конца не выяснена. Существует мнение, что оно подавляет выработку панкреатического сока и расслаблять гладкую мускулатуру желчного пузыря. Кроме этого, при развитии злокачественных новообразований уровень панкреатического полипептида резко возрастает, что является маркером развития онкологических процессов в поджелудочной железе.

Эпсилон-клетки


Человеческий аппетит контролируется гормоном грилином, за выработку которого отвечают Эпсилон-клетки.

Показатели составляют менее 1% от всех структурных единиц, что находятся в островках, но из-за этого клетки являются еще более важными. Основной функцией этих единиц является выработка вещества под названием грилин. Действие этого биологически активного компонента проявляется в регуляции аппетита человека. Повышение его количества в крови вызывает появление у человека чувства голода.

Почему появляются антитела?

Иммунитет человека защищается от чужеродных белков путем выработки оружия, которое активируется только против определенного вещества. Таким методом противодействия вторжению служит выработка антител. Но иногда в этом механизме случается сбой и тогда собственные клетки, а при сахарном диабете ими являются бета, выступают мишенью для антител. В результате организм уничтожает сам себя.

Опасность появления антител к островкам Лангерганса?

Антитело является специфическим оружием только против определенного белка, в этом случае островков Лангерганса. Это приводит к полной гибели бета-клеток и к тому, что организм иммунные силы потратит на их уничтожение, игнорируя борьбу с опасными инфекциями. После этого инсулин полностью прекращает вырабатываться в организме и без введения его извне, человек не сможет усваивать глюкозу. Нормально питаясь, он может даже умереть от голода.

Кому показано проведение анализов?


Люди, страдающие ожирением, обязательно должны сдать анализ на антитела.

Исследования на присутствие у человека такой болезни, как сахарный диабет 1 типа, проводят людям с ожирением, а также тем, у кого хотя бы один из родителей уже имеют этот недуг. Эти факторы повышают вероятность развития патологического процесса. Стоит сдать анализы на наличие людям, страдающим другими заболеваниями поджелудочной железы, а также тем, кто перенес травмы этого органа. Некоторые вирусные инфекции запускают аутоиммунный процесс.

Какие гормоны вырабатывает поджелудочная железа?

Поджелудочная железа принимает главное участие в производстве пищеварительных соков, состоящих из мощных ферментов. Ферменты высвобождаются в тонкой кишке после еды, чтобы переваривать поступающую пищу.

Также железа производит различные гормоны, контролирующие уровень глюкозы в крови.

Железа вырабатывает гормоны из эндокринных клеток – эти клетки собраны в кластеры, известные как островки Лангерганса и контролирует с помощью них, что происходит в крови.

Клетки могут выделять гормоны непосредственно в кровь, когда это необходимо.

В частности, когда уровень сахара в крови возрастает, клетки вырабатывают гормоны, в частности инсулин.

Итак, поджелудочная железа вырабатывает гормон инсулин.

Этот гормон помогает организму снижать уровень глюкозы в крови и направляет сахар в жир, мышцы, печень и другие ткани тела, где он может быть использован для получения энергии, когда это необходимо.

«Альфа - клетки» в островках Лангерганса производят еще один важный гормон, глюкагон. Он имеет противоположный инсулину эффект, помогая высвобождать энергию в кровь, повышая уровень сахара в крови.

Глюкагон и инсулин работают вместе, контролируя баланс глюкозы в крови.

Общая характеристика

Основная работа поджелудочной железы – выработка панкреатических ферментов. Она регулирует с их помощью процессы пищеварения.

Именно они помогают расщеплять белки, жиры и углеводы, поступившие с пищей. За их выработку отвечает более 97% клеток железы.

И только около 2% ее объема занимают особые ткани, получившие название «островки Лангерганса». Они представляют собой небольшие группы клеток, которые вырабатывают гормоны.

Расположены эти скопления равномерно по всей поджелудочной железе.

Клетки эндокринной части железы вырабатывают некоторые важные гормоны. Они имеют особое строение и физиологию.

Эти участки железы, где расположены островки Лангерганса, не имеют выводных протоков. Только множество кровеносных сосудов, куда непосредственно попадают полученные гормоны, окружают их.

При различных патологиях поджелудочной железы часто повреждаются эти скопления эндокринных клеток. Из-за этого количество продуцируемых гормонов может снизиться, что негативно отражается на общем состоянии организма.

Строение островков Лангерганса неоднородно. Ученые разделили все клетки, составляющее их, на 4 типа и выяснили, что каждый вырабатывает определенные гормоны:

  • примерно 70% объема островков Лангерганса занимают бета-клетки, которые синтезируют инсулин;
  • на втором месте по важности стоят альфа-клетки, которые составляют 20% этих тканей, они вырабатывают глюкагон;
  • дельта-клетки производят соматостатин, они составляют менее 10% площади островков Лангерганса;
  • меньше всего здесь располагается PP-клеток, которые отвечают за выработку панкреатического полипептида;
  • кроме того, в небольшом количестве эндокринная часть поджелудочной синтезирует другие гормоны: гастрин, тиролиберин, амилин, с-пептид.

Возможные гормональные проблемы

Между приемами пищи, поджелудочная железа не вырабатывает инсулин, и это позволяет организму постепенно выпускать запасы накопленной энергии обратно в кровь по мере необходимости.

Уровни глюкозы в крови остается очень стабильными в любое время, что позволяет телу иметь постоянный приток энергии. Эта энергия необходима ему для обмена веществ, физических упражнений и в виде «топлива» для мозга, который «работает» на глюкозе.

Это гарантирует, что организм не голодает между приемами пищи.

Также, гормоны, выпущенные в период острого стресса, такие как адреналин, останавливают высвобождение инсулина, ведущего к повышению уровня глюкозы в крови.

Когда клетки поджелудочной железы, производящие инсулин, становятся неэффективными, или перестают работать вообще, и не вырабатывают достаточное количество инсулина, это вызывает сахарный диабет.

Инсулин

Это основной гормон поджелудочной железы, оказывающий серьезное влияние на углеводный обмен в организме. Именно он отвечает за нормализацию уровня глюкозы и скорость усвоения ее разными клетками. Вряд ли обычный человек, далекий от медицины, знает, какие гормоны вырабатывает поджелудочная железа, но о роли инсулина известно каждому.

Этот гормон производится бета-клетками, которых довольно много в островках Лангерганса. Больше ни в каком месте организма он не производится. А при старении человека эти клетки постепенно гибнут, поэтому количество инсулина снижается. Этим можно объяснить то, что с возрастом растет число людей, заболевших сахарным диабетом.

Гормон инсулин – это белковое соединение – короткий полипептид. Он не вырабатывается постоянно одинаково.

Стимулирует его производство увеличение количества сахара в крови. Ведь без инсулина глюкоза не может усвоиться клетками большинства органов.

А основные его функции именно в том и состоят, чтобы ускорять передачу молекул глюкозы клеткам. Это довольно сложный процесс, направленный на то, чтобы глюкоза не присутствовала в крови, а поступала туда, где она действительно нужна – на обеспечение работы клеток.

Роль гормонов

Инсулин, основной гормон поджелудочной железы, жестко регулируются в здоровом организме человека, чтобы балансировать потребление пищи и метаболические потребности организма.

Инсулин регулирует обмен веществ, способствуя усвоению углеводов. Поглощенная тканями глюкоза превращается в гликоген через гликогенез, либо в жиры (триглицериды) через липогенез.

Действие гормона на уровне человеческого метаболизма включают в себя:

  • повышение клеточного потребления определенных веществ, наиболее заметного в усвоении глюкозы мышцами и жировой тканью (примерно двумя третями всех клеток организма);
  • повышение репликации ДНК и синтез белка с помощью контроля поглощения аминокислоты;
  • изменение активности многочисленных ферментов.

Действия инсулина, прямые и косвенные:

  • стимуляция поглощения глюкозы – инсулин снижает концентрацию глюкозы в крови за счет индукции потребления глюкозы клеткой;
  • индуцирует синтез гликогена – когда уровни глюкозы высоки, инсулин индуцирует образование гликогена путем активации фермента гексокиназы. Кроме того, инсулин активирует ферменты фосфофруктокиназы и гликогенсинтаз, которые ответственны за синтез гликогена;
  • увеличение поглощения калия – стимуляция клеток увеличивать содержание внутриклеточной воды;
  • снижение глюконеогенеза и гликогенолиза, что уменьшает выработку глюкозы из неуглеводных субстратов, главным образом в печени;
  • увеличение синтеза липидов – инсулин заставляет жировые клетки взять в глюкозу крови, которая превращается в триглицериды, снижение инсулина вызывает обратное действие;
  • увеличение этерификации жирных кислот – провоцируют жировую ткань синтезировать нейтральные жиры (например, триглицериды), снижение инсулина вызывает обратное действие;
  • снижение липолиза – процесса расщепления жиров на составляющие их жирные кислоты под действием фермента липазы;
  • снижение протеолиза – снижение распада белка;
  • снижение аутофагии – снижение уровня деградации поврежденных органелл;
  • увеличение поглощения аминокислот – провоцирует клетки поглощать циркулирующие аминокислоты, снижение инсулина ингибирует поглощение;
  • тонизирование артериальных мышц – принуждает мышцы артериальной стенки расслабиться, увеличивая приток крови, особенно в микроартериях, уменьшение инсулина позволяет мышце сокращаться;
  • увеличение секреции соляной кислоты париетальных клеток в желудке;
  • снижение почечной экскреции натрия.

Инсулин также влияет на другие функции организма, такие как сосудистое соответствие и познавательную способность. После того, как инсулин поступает в человеческий мозг, он улучшает обучение и преимущества вербальной памяти человека.

Гормон также оказывает стимулирующее действие на освобождение гормона гонадотропина из гипоталамуса, что благоприятствует функции размножения.

Гормоны панкреатический полипептид и соматостатин, вырабатываемые поджелудочной железой, предположительно играют определенную роль в регуляции и тонкой настройке инсулин и глюкагон-продуцирующих клеток.

Глюкагон

Это второй по значению гормон поджелудочной железы. Производят его альфа-клетки, которые занимают около 22 % объема островков Лангерганса. По строению он похож на инсулин – так же является коротким полипептидом. Но функции выполняет прямо противоположные ему. Он не снижает, а повышает уровень глюкозы в крови, стимулируя ее выход из мест хранения.

Поджелудочная железа выделяет глюкагон, когда количество глюкозы в крови уменьшается. Ведь она вместе с инсулином тормозит его производство. Кроме того, повышается синтез глюкагона при наличии в крови инфекции или повышении уровня кортизола, при усиленных физических нагрузках или увеличении количества белковой пищи.

Панкреатический полипептид

Есть еще менее важные гормоны поджелудочной железы, которых вырабатывается совсем немного. Одним из них является панкреатический полипептид.

Он был обнаружен недавно, поэтому его функции еще до конца не изучены. Производится этот гормон только поджелудочной железой – ее PP-клетками, а также в протоках.

Она секретирует его при употреблении большого количества белковой пищи или жиров, при повышенных физических нагрузках, голодании, а также при сильной гипогликемии.

При попадании этого гормона в кровь происходит блокировка выработки панкреатических ферментов, замедление выброса желчи, трипсина и билирубина, а также расслабление мышц желчного пузыря. Получается, что панкреатический полипептид экономит ферменты и предотвращает потери желчи.

Кроме того он регулирует количество гликогена в печени. Замечено, что при ожирении и некоторых других обменных патологиях наблюдается недостаток этого гормона.

А повышение его уровня может быть признаком сахарного диабета или гормонозависимых опухолей.

Дисфункции гормонов

Воспалительные процессы и другие заболевания поджелудочной железы могут повредить клетки, в которых вырабатываются гормоны. Это приводит к появлению различных патологий, связанных с нарушением обменных процессов. Чаще всего при гипофункции эндокринных клеток наблюдается недостаток инсулина и развивается сахарный диабет. Из-за этого повышается количество глюкозы в крови, и она не может усвоиться клетками.

Для диагностики эндокринных патологий поджелудочной железы применяется анализ крови и мочи на содержание глюкозы. Очень важно обратиться к врачу для проведения обследования при малейшем подозрении на дисфункцию этого органа, так как на начальных этапах любые патологии лечить легче.

Простое определение количества глюкозы в крови не всегда указывает на развитие сахарного диабета. При подозрении на это заболевание делают анализ на биохимию, тесты толерантности к глюкозе и другие.

А вот наличие глюкозы в моче является признаком тяжелого течения сахарного диабета.

Недостаток других гормонов поджелудочной железы наблюдается реже. Чаще всего такое случается при наличии гормонозависимых опухолей или гибели большого количества эндокринных клеток.

Поджелудочная железа выполняет в организме очень важные функции. Она не только обеспечивает нормальное пищеварение. Гормоны, которые производятся ее клетками, необходимы для нормализации количества глюкозы и обеспечения углеводного обмена.