Как научиться считать в уме быстро. Тайны магии математики

Процесс устного счёта можно рассматривать как технологию счёта, объединяющую представления и навыки человека о числах, математические алгоритмы арифметики.

Имеются три вида технологии устного счёта , которые используют различные физические возможности человека:

    аудиомоторная технология счёта;

    визуальная технология счёта.

Характерной особенностью аудиомоторного устного счёта является сопровождение каждого действия и каждого числа словесной фразой типа «дважды два - четыре». Традиционная система счёта является именно аудиомоторной технологией. Недостатками аудиомоторного способа ведения расчётов являются:

    отсутствие в запоминаемой фразе взаимосвязей с соседними результатами,

    невозможность выделить во фразах о таблице умножения отдельно десятки и единицы произведения без повторения всей фразы;

    невозможность обратить фразу вспять от ответа к множителям, что важно для выполнения деления с остатком;

    медленная скорость воспроизведения словесной фразы.

Супервычислители, демонстрируя высокие скорости мышления, используют свои визуальные способности и отличную зрительную память. Люди, которые владеют скоростными вычислениями, не используют слов в процессе решения арифметического примера в уме. Они демонстрируют реальность визуальной технологии устного счёта , лишённой главного недостатка - замедленной скорости выполнения элементарных действий с числами.

Возможно, и наши способы умножения не является совершенным; может быть будет придуман еще более быстрый и надежный.

Конечно, знать все способы быстрого счета невозможно, но наиболее доступные можно изучить и применять.

Тренировка устного счёта.

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. – все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Несколько способов устного счета:

1. Умножение на 5 удобнее так: сначала умножить на 10, а потом разделить на 2

2. Умножение на 9. Для того чтобы умножить число на 9 надо к множимому приписать 0 и от получаемого числа отнять множимое, например 45 9=450-45=405.

3. Умножение на 10. Приписать справа нуль: 48 10 = 480

4. Умножение на 11. двузначного числа . Раздвинуть цифры N и A, вписать посередине сумму (N+A).

например, 43 11 = = = 473.

5. Умножение на 12. производится примерно так же, как и на 11. Каждую цифру числа удваиваем и прибавляем к результату соседа исходной цифры справа.

Примеры. Умножим на .

Начнем с самой правой цифры – это . Удвоим и добавим соседа (его нет в данном случае). Получаем . Запишем и запомним .

Перейдем влево к следующей цифре . Удвоим , получим , добавим соседа, , получим , прибавим . Запишем и запомним .

Перейдем влево к следующей цифре, . Удвоим , получим . Добавим соседа, и получим . Прибавим , которую запоминали, получим . Запишем и запомним .

Перейдем влево к несуществующей цифре – нулю. Удвоим его, получим и добавим соседа, , что даст нам . Наконец, добавим , которую запоминали, получим . Запишем . Ответ: .

6. Умножение и деление на 5, 50, 500 и т. д.

Умножение на 5, 50, 500 и т. д. заменяется умножением на 10, 100,1000 и т. д. с последующим делением на 2 полученного произведения (или делением на 2 и умножением на 10, 100, 1000 и т. д.). (50 = 100: 2 и т.д.)

54 5=(54 10):2=540:2=270 (54 5 = (54:2) 10= 270).

Чтобы число разделить на 5,50, 500 и т. д., надо это число разделить на 10,100,1000 и т. д. и умножить на 2.

10800: 50 = 10800:100 2 =216

10800: 50 = 10800 2:100 =216

7. Умножение и деление на 25, 250, 2500 и т. д.

Умножение на 25, 250, 2500 и т. д. заменяется умножением на 100,1000,10000 и т. д. и полученный результат разделить на 4. (25 = 100: 4)

542 25=(542 100):4=13550 (248 25=248: 4 100 = 6200)

(если число делится на 4, то выполнение умножения не занимает времени, любой ученик может выполнить).

Чтобы выполнить деление числа на 25, 25,250,2500 и т. д. это число надо разделить на 100,1000,10000 и т.д. и умножить на 4: 31200: 25 = 31200:100 4 = 1248.

8. Умножение и деление на 125, 1250, 12500 и т. д.

Умножение на 125, 1250 и т. д. заменяется умножением на 1000, 10000 и т. д. и полученное произведение нужно делить на 8. (125 = 1000: 8)

72 125=72 1000: 8=9000

Если число делится на 8, то сначала выполним деление на 8 , а потом умножение на 1000,10000 и т. д.

48 125 = 48: 8 1000 = 6000

Чтобы разделить число на 125, 1250 и т.д., надо это число разделить на 1000, 10000 и т. д. и умножить на 8.

7000: 125 = 7000: 10008 = 56.

9. Умножение и деление на 75, 750 и т. д.

Чтобы число умножить на 75, 750и т. д. надо это число разделить на 4 и умножить на 300, 3000 и т.д. (75 = 300: 4)

4875 = 48:4300 = 3600

Чтобы число разделить на 75,750 и т. д. надо это число разделить на 300, 3000 и т.д. и умножить на 4

7200: 75 = 7200: 3004 = 96.

10. Умножение на 15, 150.

При умножении на 15, если число нечетное, умножают его на 10 и прибавляют половину полученного произведения:

23 15=23 (10+5)=230+115=345;

если же число четное, то поступаем еще проще - к числу прибавляем его половину и результат умножаем на 10:

18 15=(18+9) 10=27 10=270.

При умножении числа на 150 пользуемся тем же приемом и умножаем результат на 10, т.к.150=15 10:

24 150=((24+12) 10) 10=(36 10) 10=3600.

Точно так же быстро умножить двузначное число (особенно четное) на двузначное, оканчивающиеся на 5:

24 35 = 24 (30 +5) = 24 30+24:2 10 = 720+120=840.

11. Перемножение двузначных чисел, меньших, чем 20.

К одному из чисел надо прибавить количество единиц другого, эту сумму умножить на 10 и прибавить к ней произведение единиц данных чисел:

18 16=(18+6) 10+8 6= 240+48=288.

Описанным способом можно умножать двузначные числа, меньшие 20, а также числа, в которых одинаковое количество десятков: 23 24 = (23+4) 20+4 6=27 20+12=540+12=562.

Объяснение :

(10+a) (10+b) = 100 + 10a + 10b + a b = 10 (10+a+b) + a b = 10 ((10+a)+b) + a b .

12. Умножение двузначного числа на 101 .

Пожалуй, самое простое правило: припишите ваше число к самому себе. Умножение закончено.
Пример: 57 101 = 5757 57 --> 5757

Объяснение: (10a+b) 101 = 1010a + 101b = 1000a + 100b + 10a + b
Аналогично производят умножение трехзначных чисел на 1001, четырехзначных - на 10001 и т.п.

13. Умножение на 22, 33, …, 99.

Чтобы двузначное число умножить 22,33, …,99, надо этот множитель представить в виде произведения однозначного числа на 11. Выполнить умножение сначала на однозначное число, а потом на 11:

15 33= 15 3 11=45 11=495.

14. Умножение двузначных чисел на 111 .

Сначала возьмём множимым такое двузначное число, сумма цифр которого меньше 10. Поясним на числовых примерах:

Так как 111=100+10+1, то 45 111=45 (100+10+1). При умножении двузначного числа, сумма цифр которого меньше 10, на 111, надо в середину между цифрами вставить два раза сумму цифр (т.е. чисел, ими изображаемых) его десятков и единиц 4+5=9. 4500+450+45=4995. Следовательно, 45 111=4995. Когда сумма цифр двузначного множимого больше или равна 10, например 68 11, надо сложить цифры множимого (6+8) и в середину между цифрами 6 и 8 вставить 2 раза единицы полученной суммы. Наконец, к составленному числу 6448 прибавить 1100. Следовательно, 68 111=7548.

15. Возведение в квадрат чисел, состоящих только из 1.

11 х 11 =121

111 х 111 = 12321

1111 х 1111 = 1234321

11111 х 11111 =123454321

111111 х 111111 = 12345654321

1111111 х 1111111 = 1234567654321

11111111 х 11111111 = 123456787654321

111111111 х 111111111 = 12345678987654321

Некоторые нестандартные приемы умножения.

Умножение числа на однозначный множитель.

Для умножения числа на однозначный множитель (например, 34 9) устно, необходимо выполнять действия, начиная со старшего разряда, последовательно складывая результаты (30 9=270, 4 9=36, 270+36=306).

Для эффективного устного счёта полезно знать таблицу умножения до 19*9. В этом случае умножение 147 8 выполняется в уме так: 147 8=140 8+7 8= 1120 + 56= 1176 . Однако, не зная таблицу умножения до 19 9, на практике удобнее вычислять все подобные примеры методом приведения множителя к базовому числу: 147 8=(150-3) 8=150 8-3 8=1200-24=1176, причем 150 8=(150 2) 4=300 4=1200.

Если одно из умножаемых раскладывается на однозначные множители, действие удобно выполнять, последовательно перемножая на эти множители, например, 225 6=225 2 3=450 3=1350. Также, проще может оказаться 225 6=(200+25) 6=200 6+25 6=1200+150=1350.

Умножение двузначных чисел.

1. Умножение на 37.

При умножении числа на 37, если данное число кратно 3,его делят на 3 и умножают на 111.

27 37=(27:3) (37 3)=9 111=999

Если же данное число не кратно 3, то из произведения вычитают 37 или к произведению прибавляют 37.

23 37=(24-1) 37=(24:3) (37 3)-37=888-37=851.

Легко запомнить произведение некоторых из них:

3 х 37 = 111 33 х 3367 = 111111

6 х 37 = 222 66 х 3367 = 222222

9 х 37 = 333 99 х 3367 = 333333

12 х 37 = 444 132 х 3367 = 444444

15 х 37 = 555 165 х 3367 = 555555

18 х 37 = 666 198 х 3367 = 666666

21 х 37 = 777 231 х 3367 = 777777

24 х 37 = 888 264 х 3367 = 888888

27 х 37 = 999 297 х 3367 = 99999

2. Если десятки двузначных чисел начнаются с одинаковой цифры, а сумма единиц равна 10 , то при их умножении находим произведение в таком порядке:

1) умножаем десятку первого числа на десятку второго большего на единицу;

2) умножаем единицы:

8 8 7= 7221 ( 8х9=72 , 3х7=21)

5 5 4=3024 ( 5х6=30 , 6х4=24)

  1. Алгоритм перемножения двузначных чисел, близких к 100

Например: 97 х 96 = 9312

Здесь я пользуюсь таким алгоритмом: если хочешь перемножить два

двузначных числа, близких к 100, то поступай так:

1) найди недостатки сомножителей до сотни;

2) вычти из одного сомножителя недостаток второго до сотни;

3) к результату припиши двумя цифрами произведение недостатков

сомножителей до сотни.


В соответствующей литературе упоминаются такие способы умножения, как «загибанием», «решеткой», «задом наперед», «ромбом», «треугольником» и многие другие. Я хотела узнать, какие ещё нестандартные приемы умножения существуют в математике? Оказывается их немало. Вот некоторые из этих приёмов.

Крестьянский метод:

Один из множителей увеличивается вдвое, пока другой параллельно уменьшается в столько же. Когда же частное становится равным единице, параллельно полученное произведение и есть искомый ответ.

Если же частное оказывается нечетным числом, то от него откидывают единицу и делят остаток. Потом произведения, которые стояли напротив нечетных частных прибавляют к полученному ответу

«Метод креста».

В этом методе множители записываются друг под другом и их цифры перемножаются по прямой и крест-накрест.

3 1 = 3 – последняя цифра.

2 1 + 3 3 = 11. Предпоследняя цифра – 1, еще 1 в уме.

2 3 = 6; 6 + 1 = 7 – это первая цифра произведения

Искомое произведение – 713.

Китайско-японский метод умножения.

Не секрет, что в разных странах методы преподавания разные. Оказывается, в Японии ученики первого класса могут перемножать трёхзначные числа, не зная таблицу умножения. Для этого используется . Логика метода понятна из рисунка. После рисования нужно всего лишь посчитать количество пересечений в каждой области.

Таким методом можно перемножать даже трёхзначные числа. Вероятно, когда дети позже выучат таблицу умножения, то смогут умножать более простым и быстрым способом, в столбик. Тем более что вышеупомянутый метод слишком трудоёмкий при умножении чисел вроде 89 и 98, потому что придётся рисовать 34 полоски и считать все пересечения. С другой стороны, в таких случаях можно использовать калькулятор. Многим покажется, что такой способ японского или китайского умножения слишком сложен и запутан, но это только на первый взгляд. Именно визуализация, то есть изображение всех точек пересечения прямых (множителей) на одной плоскости, дает нам зрительную поддержку, тогда как традиционный способ умножения подразумевает большое количество арифметических действий только в уме. Китайское или японское умножение помогает не только быстро и эффективно умножать двухзначные и трехзначные числа друг на друга без калькулятора, но и развивает эрудицию. Согласитесь, не каждый сможет похвастаться тем, что на практике владеет древнейшим китайским методом умножения ( ), который актуален и прекрасно работает и в современном мире.



Умножение можно выполнить, используя таблицу в виде матри ц :

43219876=?

Сначала пишем произведения чисел.
2. Находим суммы по диагонали:

36, 59, 70, 70, 40, 19, 6
3. Получим ответ с конца, "лишние" цифры прибавляя к переднему разряду:
2674196

Метод решётки.

Рисуется прямоугольник, разделённый на квадраты. Следом квадратные клетки, делятся по диагонали. В каждую строчку запишем произведение цифр, стоящих над этой клеткой и справа от нее, при этом цифру десятков произведения напишем над косой чертой, а цифру единиц – под ней. Теперь складываем числа в каждой косой полосе, выполняя эту операцию, справа налево. Если же она окажется больше, чем 10, то пишем только цифру единиц суммы, а цифру десятков прибавляем к следующей сумме.

6

5

2

4

1 7

3

7

7

Пишем числа-ответы слева направо: 4, 5, 17, 20, 7, 5. Начиная справа, пишем, добавляя “лишние” цифры к “соседу”: 469075.

Получили: 725 х 647 = 469075 .

Нравиться! 0

Многие спрашивают, как научиться быстро считать в уме, чтобы это выглядело незаметно и неглупо. Ведь современные технологии позволяют меньше пользоваться своей памятью и умственными способностями. Но иногда нет под рукой данных технологий и порой легче и быстрее посчитать что-то в уме. Многие люди начали считать на калькуляторе или телефоне даже элементарные вещи, что также не очень хорошо. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу - это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

Способы быстрого счета

Существует определенный набор простейших арифметических правил и закономерностей, которые не только нужно знать для устного счета, но и постоянно держать в голове, чтобы в нужный момент оперативно применить самый эффективный алгоритм. Для этого необходимо довести их использование до автоматизма, закрепить в машинальной памяти, чтобы от решения самых простых примеров успешно перейти к более сложным арифметическим действиям. Вот основные алгоритмы, которые нужно знать, помнить и применять мгновенно, автоматически:

Вычитание 7, 8, 9

Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть 8 из любого числа, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по-другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.

Умножение на 9

Быстро умножить любое число на 9 можно при помощи пальцев рук.

Деление и умножение на 4 и 8

Деление (или умножение) на 4 и на 8 являются двукратным или трехкратным делением (или умножением) на 2. Производить эти операции удобно последовательно.

Например, 46*4=46*2*2 =92*2= 184.

Умножение на 5

Умножать на 5 очень просто. Умножение на 5, и деление на 2 - это практически одно и то же. Так 88*5=440, а 88/2=44, поэтому всегда умножайте на 5, поделив число на 2 и умножив его на 10.

Умножение на 25

Умножение на 25 соответствует делению на 4 (с последующим умножением на 100). Так 120*25 = 120/4*100=30*100=3000.

Умножение на однозначные числа

Например, умножим 83*7.

Для этого сначала умножим 8 на 7 (и допишем ноль, так как 8 - разряд десятков), и прибавим к этому числу произведение 3 и 7. Таким образом, 83*7=80*7 +3*7= 560+21=581.

Возьмем более сложный пример: 236*3.

Итак, умножаем сложное число на 3 по разрядно: 200*3+30*3+6*3=600+90+18=708.

Определение диапазонов

Чтобы не запутаться в алгоритмах и по ошибке не выдать совсем неверный ответ, важно уметь строить примерный диапазон ответов. Так умножение однозначных чисел друг на друга может дать результат не более 90 (9*9=81), двузначных - не более 10 000 (99*99=9801), трехзначных не более - 1 000 000 (999*999=998001).

Раскладка на десятки и единицы

Способ заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

Например:

63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 +3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия:

1. Сначала умножаются десятки друг на друга.
2. Потом складываются 2 произведения единиц на десятки.
3. Затем прибавляется произведение единиц.

Схематично это можно описать так:

Первое действие: 60*80 = 4800 - запоминаем
- Второе действие: 60*5+3*80 = 540 - запоминаем
- Третье действие: (4800+540)+3*5= 5355 - ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Мысленная визуализация умножения в столбик

56*67 - посчитаем в столбик. Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа.

Но его можно упростить:
Первое действие: 56*7 = 350+42=392
Второе действие: 56*6=300+36=336 (ну или 392-56)
Третье действие: 336*10+392=3360+392=3 752

Частные методики умножения двузначных чисел до 30

Преимуществом трех способов умножения двузначных для устного счета состоит в том, что они универсальны для любых чисел и при хорошем навыке устного счета, они могут позволить вам достаточно быстро прийти к правильному ответу. Однако эффективность умножения некоторых двузначных чисел в уме может быть выше за счет меньшего количества действий при использовании специальных алгоритмов.

Умножение на 11

Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры.

Например: 23*11, пишем 2 и 3, а между ними ставим сумму (2+3). Или короче, что 23*11= 2 (2+3) 3 = 253.

Если сумма чисел в центре дает результат больше 10, тогда добавляем единицу к первой цифре, а вместо второй цифры пишем сумму цифр умножаемого числа минус 10.

Например: 29*11 = 2 (2+9) 9 = 2 (11) 9 = 319.
Быстро умножать на 11 устно можно не только двузначные числа, но и любые другие числа.

Например: 324 * 11=3(3+2)(2+4)4=3564

Квадрат суммы, квадрат разности

Для того чтобы возвести в квадрат двузначное число, можно воспользоваться формулами квадрата суммы или квадрата разности. Например:

23²= (20+3)2 = 202 + 2*3*20 + 32 = 400+120+9 = 529

69² = (70-1)2 = 702 - 70*2*1 + 12 = 4 900-140+1 = 4 761

Возведение в квадрат чисел, заканчивающихся на 5.Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу дописываем 25.

25² = (2*(2+1)) 25 = 625

85² = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

155² = (15*(15+1)) 25 = (15*16)25 = 24 025

Методика умножения чисел до 20 очень проста:

16*18 = (16+8)*10+6*8 = 288

Доказать правильность этого метода просто: 16*18 = (10+6)*(10+8) = 10*10+10*6+10*8+6*8 = 10*(10+6+8) +6*8. Последнее выражение и является демонстрацией описанного выше метода. По сути, этот метод является частным способом использования опорных чисел. В данном случае опорным числом является 10. В последнем выражении доказательства видно, что именно на 10 мы умножаем скобку. Но в качестве опорного числа можно использовать и любые другие числа, из которых наиболее удобными являются 20, 25, 50, 100…

Опорное число

Посмотрите на суть этого метода на примере умножения 15 и 18. Здесь удобно использовать опорное число 10. 15 больше десяти на 5, а 18 больше десяти на 8.

Для того, чтобы узнать их произведение, нужно совершить следующие операции:

1. К любому из множителей прибавить число, на которое второй множитель больше опорного. То есть прибавить 8 к 15, или 5 к 18. В первом и втором случае получается одно и то же: 23.
2. Затем 23 умножаем на опорное число, то есть на 10. Ответ: 230
3. К 230 прибавляем произведение 5*8. Ответ: 270.

Опорное число при умножении чисел до 100. Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа
Опорное число при умножении - это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100.
Методика использования опорного числа зависит от того, являются ли множители больше или меньше опорного числа. Тут возможны три случая. Покажем, все 3 методики на примерах.
Оба числа меньше опорного (под опорным) . Допустим, мы хотим умножить 48 на 47.
Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа.
Чтобы умножить 48 на 47, используя опорное число 50, нужно:

1. Из 47 вычесть столько, сколько не хватает 48 до 50, то есть 2. Получается 45 (или
из 48 вычесть 3 - это всегда одно и то же)
2. Дальше 45 умножаем на 50 = 2250
3. Затем прибавляем 2*3 к этому результату - 2 256

50 (опорное число)

3(50-47) 2(50-48)

(47-2)*50+2*3=2250+6=2256

Если числа меньше опорного, то из первого множителя вычитаем разность между опорным числом и вторым множителем. Если числа больше опорного, то к первому множителю прибавляем разность опорного числа и второго множителя.

50(опорное число)

(51+13)*50+(13*1)=3200+13=3213

Одно число под опорным, а другое над. Третий случай использования опорного числа - когда одно число больше опорного, а другое меньше. Такие примеры решаются не сложнее, чем предыдущие. Меньший множитель увеличиваем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей. Или больший множитель уменьшаем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей.

50(опорное число)

5(50-45) 2(52-50)

(52-5)*50-5*2=47*50-10=2340 или (45+2)*50-5*2=47*50-10=2340

При умножении двузначных чисел из разных десятков в качестве опорного числа удобнее
брать круглое число, которое больше большего множителя.

90(опорное число)

63 (90-27) 1 (90-89)

(89-63)*90+63*1=2340+63=2403

Таким образом, с помощью использования одного опорного числа можно умножать большую комбинацию двузначных чисел. Описанные выше методики можно разделить на универсальные (подходящие для любых чисел) и частные (удобные для конкретных случаев).

В крайнем случае, можно воспользоваться «крестьянским» счетом . Чтобы умножить одно число на другое, допустим 21*75, нам нужно записать числа в две колонки. Первое число левой колонки 21, первое число правого столбика 75. Затем числа стоящие в левой колонке делить на 2 и отбрасывать остаток, пока не получим единицу, а числа в правой колонке умножаем на 2. Все строчки, имеющие четные числа в левой колонке вычеркиваем, а оставшиеся числа в правой колонке складываем, у нас получается точный результат.

Заключение

Как и все способы вычислений, данные методы быстрого счета имеют свои достоинства и недостатки:

ПЛЮСЫ:

1.С помощью различных методов быстрых вычислений даже самый малообразованный человек может считать.
2. Способы быстрого счета могут помочь избавиться от сложного действия, путем замены его на несколько более простых.
3.Способы быстрого счета полезны в ситуациях, когда нельзя воспользоваться умножением в столбик.
4.Способы быстрого счета позволяют сократить время вычислений.
5.Устный счет развивает умственную деятельность, что помогает быстрее ориентироваться в сложных жизненных ситуациях.
6. Техника устного счета делает процесс вычислений более увлекательным и интересным.

МИНУСЫ:

1.Зачастую, решать пример, пользуясь способами быстрого счета, оказывается дольше, чем просто перемножать в столбик, так как приходится выполнять большее количество действий, каждое из которых проще первоначального.
2.Бывают ситуации, когда человек от волнения или еще чего-то забывает способы быстрого счета или вовсе - путается в них; в таких случаях ответ получается неправильным, а способы являются фактически бесполезными.
3.Не для всех случаев разработаны способы быстрого счета.
4.Вычисляя с использованием техники быстрого счета, нужно держать множество ответов в голове, в чем можно запутаться и прийти к ошибочному результату.

Несомненно, практика играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые способны считать в уме сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать арифметические операции, которые не каждый человек и в столбик сможет посчитать. Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме.

Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт , значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета. Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете удивить даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

ВВЕДЕНИЕ

Во все времена математика была и остается одним из основных предметов в школе, потому что математические знания необходимы всем людям. Не каждый школьник, обучаясь в школе, знает, какую профессию он выберет в будущем, но каждый понимает, что математика необходима для решения многих жизненных задач: расчеты в магазине, оплата за коммунальные услуги, расчет семейного бюджета и т.д. Кроме того, всем школьникам необходимо сдавать экзамены в 9-м классе и в 11-м классе, а для этого, обучаясь с 1-го класса, необходимо качественно осваивать математику и прежде всего, нужно научиться считать.

Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны, если бы не наука о числах.

Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В моей работе предпочтение отдано стихии чисел и действий с ними.

Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому я решил показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием.

Цель: изучить приемы быстрого счета, показать необходимость их применения для упрощения вычислений.

В соответствии с поставленной целью были определены задачи:

  1. Исследовать, применяют ли школьники приемы быстрого счета.
  2. Изучить приемы быстрого счета, которые можно использовать, упрощая вычисления.
  3. Составить памятку для учащихся 5-6 классов для применения приемов быстрого счета.

Объект исследования: приемы быстрого счета.

Предмет исследования : процесс вычислений.

Гипотеза исследования: если показать, что применение приемов быстрого счета, облегчает вычисления, то можно добиться того, что повысится вычислительная культура учащихся, и им будет легче решать практические задачи.

При выполнении работы были использованы следующие приемы и методы : опрос (анкетирование), анализ (статистическая обработка данных), работа с источниками информации, практическая работа, наблюдения.

Данная работа относится к прикладным исследованиям , т.к. в ней показывается роль применения приемов быстрого счета для практической деятельности.

При работе над докладом я пользовался следующими методами:

  1. поисковый метод с использованием научной и учебной литература, а также поиск необходимой информации в сети Интернет;
  2. практический метод выполнения вычислений с применением нестандартных алгоритмов счета;
  3. анализ полученных в ходе исследования данных.

Актуальность моего исследования состоит в том, что в наше время все чаще на помощь ученикам приходят калькуляторы, и все большее количество учеников не может считать устно. А ведь изучение математики развивает логическое мышление, память, гибкость ума, приучает человека к точности, к умению видеть главное, сообщает необходимые сведения для понимания сложных задач, возникающих в различных областях деятельности современного человека. Поэтому в своей работе я хочу показать, как можно считать быстро и правильно и что процесс выполнения действий может быть не только полезным, но и интересным занятием. Именно использование нестандартных приемов в формировании вычислительных навыков усиливает интерес учащихся к математике и содействует развитию математических способностей.

За простыми действиями сложения, вычитания, умножения и деления скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали. Захотелось узнать эти и другие способы вычислений, а также сравнить их с сегодняшними.

Умеете ли вы считать? Вопрос, пожалуй, даже обидный для человека старше трехлетнего возраста. Кто не умеет считать? Каждый ответит, что для этого, особого искусства не требуется. И будет прав. Но вопрос – как считать? Можно считать на калькуляторе, можно считать столбиком в тетради, а можно считать устно, используя приемы быстрого счета. Я очень быстро считаю устно, практически никогда не решаю столбиком, письменно, все потому, что знаю и применяю различные приемы быстрого счета. Из моих одноклассников мало кто умеет считать быстро устно и мне захотелось выяснить, а знают ли они приемы быстрого счета, если нет, то помочь им освоить эти приемы, с этой целью составить для них памятку с приемами быстрого счета.

Для того чтобы выяснить, знают ли современные школьники другие способы выполнения арифметических действий, кроме умножения, сложения, вычитания столбиком и деления «уголком» и хотели бы узнать новые способы, был проведен тестовый опрос.

Для начала, я провел анкетирование в 6-х классах нашей школы. Задавал ребятам простые вопросы. Зачем вообще нужно уметь считать? При изучении каких школьных предметов требуется правильный счет? Знают ли они приемы быстрого счета? Хотели бы научиться быстро считать устно? (Приложение I).

В опросе приняли участие 61 человек. Проанализировав результаты, я сделал вывод, что большинство учеников считает, что умение считать пригодится в жизни и необходимо в школе, особенно при изучении математики, физики, химии, информатики и технологии. Приемы быстрого счета знают несколько учеников и почти все хотели бы научиться быстро считать. (Результаты анкетирования отражены в диаграммах) (Приложение II).

Проведя статистическую обработку данных, я сделал вывод, что не все учащиеся знают приемы быстрого счета, поэтому необходимо сделать для учеников 5-6-х классов памятки с приемами быстрого счета, чтобы использовать их при выполнении вычислений.

Результаты анкетирования:

Вопрос

5 класс

6 классы

Всего

да

нет

не знаю

да

нет

не знаю

А хотели бы узнать?

Сводная таблица анкетирования:

Вопрос

5, 6 классы

да

нет

не знаю

Нужно ли уметь выполнять арифметические действия с натуральными числами современному человеку?

Умеете ли вы умножать, складывать, вычитать числа столбиком, делить «уголком»?

Знаете ли вы другие способы выполнения арифметических действий?

А хотели бы узнать?

По результатам опроса можно сделать вывод, что в большинстве случаев современные школьники не знают других способов выполнения действий кроме таких как умножения, сложения, вычитания столбиком и деления «уголком», так как редко обращаются к материалу, находящемуся за пределами школьной программы.

Глава I. ИСТОРИЯ СЧЁТА

1. КАК ВОЗНИКЛИ ЧИСЛА

Подсчитывать предметы люди научились ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т.д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.
И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки – по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось сделать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.

Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней. Обычно таких числительных было мало. Например, у племени реки Муррей в Австралии было два простых числительных: энэа (1) и петчевал (2). Другие числа они выражали составными числительными: 3= «петчевал–энэа», 4 «петчевал–петчевал» и т. д. Ещё одно австралийское племя – камилороев имело простые числительные мал (1), булан (2), гулиба (3) . И здесь другие числа получались сложением меньших: 4=«булан–булан», 5=«булан–гулиба», 6=«гулиба–гулиба» и т.д.

У многих народов название числа зависело от подсчитываемых предметов. Если жители островов Фиджи считали лодки, то число 10 называли «боло»; если они считали кокосовые орехи, то число 10 называли «каро». Точно так же поступали живущие на Сахалине у берегах Амура нивхи. Ещё в XIX веке одно и то же число они называли разными словами, если считали людей, рыб, лодки, сети, звёзды, палки.

Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.

С развитием производства и торгового обмена люди стали лучше понимать, что общего у трёх лодок и трёх топоров, десяти стрел и десяти орехов. Племена часто вели обмен «предмет за предмет»; к примеру, обменивали 5 съедобных кореньев на 5 рыб. Становилось ясно, что 5 одно и то же и для кореньев, и для рыб; значит, и называть его можно одним словом.

Похожие способы счёта применяли и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.

До сих пор я рассказывал об устном счёте. А как записывали числа? Поначалу, ещё до возникновения письменности, использовали зарубки на палках, насечки на костях, узелки на верёвках. Найденная волчья кость в Дольни – Вестонице (Чехословакия), имела 55 насечек, сделанных более 25 000 лет назад.

Когда появилась письменность, появились и цифры для записи чисел. Сначала цифры напоминали зарубки на палках: в Египте и Вавилоне, в Этрурии и Финики, в Индии и Китае небольшие числа записывали палочками или чёрточками. Например, число 5 записывали пятью палочками. Индейцы ацтеки и майя вместо палочек использовали точки. Затем появились специальные знаки для некоторых чисел, таких, как 5 и 10 .

В то время почти все нумерации были не позиционными, а похожими на римскую нумерацию. Лишь одна вавилонская шестидесятеричная нумерация была позиционной. Но и в ней долго не было нуля, а также запятой, отделяющей целую часть от дробной. Поэтому одна и та же цифра могла означать и 1, и 60, и 3600. Угадывать значение числа приходилось по смыслу задачи.

За несколько столетий до новой эры изобрели новый способ записи чисел, при котором цифрами служили буквы обычного алфавита. Первые 9 букв обозначали числа десятки 10, 20,…, 90, а ещё 9 букв обозначали сотни. Такой алфавитной нумерацией пользовались до 17 в. Чтобы отличить «настоящие» буквы от чисел, над буквами–числами ставили чёрточку (на Руси эта чёрточка называлась «титло»).

Во всех этих нумерациях было очень трудно выполнить арифметические действия. Поэтому изобретение в VI веке индийцами десятичной позиционной нумерации по праву считается одним из крупнейших достижений человечества. Индийская нумерация и индийские цифры стали известны в Европе от арабов, и обычно их называют арабскими.

При записи дробей ещё долгое время целую часть записывали в новой десятичной нумерации, а дробную – в шестидесятеричной. Но в начале XV в. самаркандский математик и астроном аль–Каши стал употреблять в вычислениях десятичные дроби.

Числа, с которыми мы работаем с положительными и отрицательными числами. Но, оказывается, что это не все числа, которые используют в математике и других науках. И узнать о них можно не дожидаясь старшей школы, а гораздо раньше, если изучать историю возникновения чисел в математике.

Глава II. СТАРИННЫЕ СПОСОБЫ ВЫЧИСЛЕНИЯ

2.1. РУССКИЙ КРЕСТЬЯНСКИЙ СПОСОБ УМНОЖЕНИЯ

В России несколько веков назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название КРЕСТЬЯНСКИЙ (существует мнение, что он берет начало от египетского).

Пример: умножим 47 на 35,

  1. запишем числа на одной строчке, проведём между ними вертикальную черту;
  2. левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);
  3. деление заканчивается, когда слева появится единица;
  4. вычёркиваем те строчки, в которых стоят слева чётные числа; 35 + 70 + 140 + 280 + 1120 = 1645
  5. далее оставшиеся справа числа складываем – это результат.

2.2. МЕТОД «РЕШЕТКИ»

Выдающийся арабский математик и астроном Абу Абдалах Мухаммед Бен Мусса аль – Хорезми жил и работал в Багдаде. Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.

Сведений о жизни и деятельности Мухаммеда аль – Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время.

1

3

0

1

В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «МЕТОДОМ РЕШЁТКИ» . Этот метод даже проще, чем применяемый сегодня.

Пример: умножим 25 и 63.

Начертим таблицу, в которой две клетки по длине и две по ширине запишем одно число по длине другое по ширине. В клетках запишем результат умножения данных цифр, на их пересечении отделим десятки и единицы диагональю. Полученные цифры сложим по диагонали, и полученный результат можно прочитать по стрелке (вниз и вправо).

Мною рассмотрен простой пример, однако, этим способом можно умножать любые многозначные числа.

Рассмотрю еще один пример: перемножим 987 и 12:

  1. рисуем прямоугольник 3 на 2 (по количеству десятичных знаков у каждого множителя);
  2. затем квадратные клетки делим по диагонали;
  3. вверху таблицы записываем число 987;
  4. слева таблицы число 12;
  5. теперь в каждый квадратик впишем произведение цифр, расположенных в одной строчке и в одном столбце с этим квадратиком, десятки ниже диагонали, единицы выше;
  6. после заполнения всех треугольников, цифры в них складывают вдоль каждой диагонали справой стороны;
  7. результат читаем по стрелке.

Этот алгоритм умножения двух натуральных чисел был распространен в средние века на Востоке и Италии.

Неудобство этого способа мне хотелось бы отметить в трудоемкости подготовки прямоугольной таблицы, хотя сам процесс вычисления интересен и заполнение таблицы напоминает игру.

2.3. УМНОЖЕНИЕ НА ПАЛЬЦАХ

Древние египтяне были очень религиозны и считали, что душу умершего в загробном мире подвергают экзамену по счёту на пальцах. Уже это говорит о том значении, которое придавали древние этому способу выполнения умножения натуральных чисел (он получил название ПАЛЬЦЕВОГО СЧЕТА ).

Умножали на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, насколько первый множитель превосходил число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. После этого брали столько десятков, сколько вытянуто пальцев на обеих руках, и прибавляли к этому числу произведение загнутых пальцев на первой и второй руке.

Пример: 8 ∙ 9 = 72

Позже пальцевой счёт усовершенствовали – научились показывать с помощь пальцев числа до 10000.

Движение пальца – это еще один из способов помочь памяти: с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1, второй за ним обозначим цифрой 2, затем 3, 4… до десятого пальца, который означает 10. Если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается девять; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения (убедитесь в этом самостоятельно).

Итак, рассмотренные нами старинные способы умножения показывают, что используемый в школе алгоритм умножения натуральных чисел - не единственный и известен он был не всегда.

Однако, он достаточно быстр и наиболее удобен.

Глава III. УСТНЫЙ СЧЕТ – ГИМНАСТИКА УМА

3.1. РАЗЛИЧНЫЕ СПОСОБЫ СЛОЖЕНИЯ И ВЫЧИТАНИЯ

СЛОЖЕНИЕ

Основное правило для выполнения сложения в уме звучит так:

Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д. Например:

56+8=56+10-2=64;

65+9=65+10-1=74.

СЛОЖЕНИЕ В УМЕ ДВУЗНАЧНЫХ ЧИСЕЛ

Если цифра единиц в прибавляемом числе больше5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы. Например:

34+48=34+50-2=82;

27+31=27+30+1=58.

СЛОЖЕНИЕ ТРЕХЗНАЧНЫХ ЧИСЕЛ

Складываем слева на право, то есть сначала сотни, потом десятки, а затем единицы. Например:

359+523= 300+500+50+20+9+3=882;

456+298=400+200+50+90+6+8=754.

ВЫЧИТАНИЕ

Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ.

56-9=56-10+1=47;

436-87=436-100+13=349.

ВЫЧИТАНИЕ ЧИСЛА МЕНЬШЕ 100 ИЗ ЧИСЛА БОЛЬШЕ 100

Если вычитаемое меньше 100, а уменьшаемое больше 100, но меньше 200, есть простой способ вычислить разность в уме. 134-76=58

76 на 24меньше 100. 134 на 34 больше 100. Прибавим 24 к 34 и получим ответ: 58.

152-88=64

88 на 12 меньше 100,а 152 больше 100 на 52, значит

152-88=12+52=64

3.2. РАЗЛИЧНЫЕ СПОСОБЫ УМНОЖЕНИЯ И ДЕЛЕНИЯ

Изучив литературу по данной теме, мною был сделан отбор, из множества приемов быстрого счета, я выбрал приемы умножения и деления, которые просты в понимании и применении для любого ученика. Эти приемы я и включил в памятку (Приложение III), которая будет полезна для учеников 5-6-х классов.

  1. Умножение и деление числа на 4.

Чтобы умножить число на 4, нужно его дважды умножить на 2.

Например:

26·4=(26·2)·2=52·2=104;

417·4=(417·2)·2=834·2=1668.

Чтобы разделить число на 4, нужно его дважды разделить на 2.

Например:

324:4=(324:2):2=162:2=81.

  1. Умножение и деление числа на 5.

Чтобы умножить число на 5, нужно его умножить на 10 и разделить на 2.

Например:

236·5=(236·10):2=2360:2=1180.

Чтобы разделить число на 5, нужно умножить 2 и разделить на 10, т.е. отделить запятой последнюю цифру.

Например:

236:5=(236·2):10=472:10=47,2.

  1. Умножение числа на 1,5.

Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину.

Например: 34·1,5=34+17=51;

146·1,5=146+73=219.

  1. Умножение числа на 9.

Чтобы умножить число на 9, нужно к нему приписать 0 и отнять исходное число.

Например: 72·9=720-72=648.

  1. Умножение на 25 числа, делящегося на 4.

Чтобы умножить на 25 число, делящееся на 4, нужно его разделить на 4 и получившееся число умножить на 100.

Например: 124·25=(124:4)·100=31·100=3100.

  1. Умножение двузначного числа на 11

При умножении двузначного числа на 11, нужно между цифрой единиц и цифрой десятков вписать сумму этих цифр, причем, если сумма цифр больше 10, то единицу нужно прибавить к старшему разряду (первой цифре).

Например:
23·11=253, т.к. 2+3=5, поэтому между 2 и 3 ставим цифру 5;
57·11=627, т.к. 5+7=12, цифру 2 ставим между 5 и 7, а к 5 прибавляем 1, вместо 5 пишем 6.

«Краешки сложи, в серединку положи» - эти слова помогут легко запомнить данный способ умножения на 11.

Такой способ подходит только для умножения двузначных чисел.

  1. Умножение двузначного числа на 101.

Для того, чтобы число умножить на 101, нужно приписать данное число к самому себе.

Например:34·101 = 3434.

Поясним, 34·101 = 34·100+34·1=3400+34=3434.

  1. Возведение в квадрат двузначного числа, оканчивающегося на 5.

Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно цифру десятков умножить на цифру, большую на единицу, и к полученному произведению приписать справа число 25.
Например: 35 2 =1225, т.е. 3·4=12 и к 12 приписываем 25, получаем 1225.

  1. Возведение в квадрат двузначного числа, начинающегося на 5.

Для возведения в квадрат двузначного числа, начинающегося на пять, нужно прибавить к 25 вторую цифру числа и приписать справа квадрат второй цифры, причем если квадрат второй цифры – однозначное число, то перед ним надо приписать цифру 0.

Например:
52 2 = 2704, т.к. 25+2=28 и 2 2 =04;
58 2 = 3364, т.к. 25+8=33 и 8 2 =64.

3.3. ИГРЫ

Отгадывание полученного числа.

  1. Задумайте какое-нибудь число. Прибавьте к нему 11; умножьте полученную сумму на 2; от этого произведения отнимите 20; умножьте полученную разность на 5 и от нового произведения отнимите число, в 10 раз больше задуманного вами числа. Я отгадываю: вы получили 10. Верно?
  2. Задумайте число. Утрой его. Вычти из полученного 1. Полученное умножьте на 5. К полученному прибавьте 20. Разделите полученное на 15. Из полученного результата вычтите задуманное. У вас получилось 1.
  3. Задумайте число. Умножьте его на 6. Вычтите 3. Умножьте на 2. Прибавьте 26. Вычтите удвоенное задуманное. Разделите на 10. Вычтите задуманное. У вас получилось 2.
  4. Задумайте число. Утройте его. Вычтите 2. Умножьте на 5. Прибавьте 5. Разделите на 5. Прибавьте 1. Разделите на задуманное. У вас получилось 3.
  5. Задумайте число, удвойте его. Прибавьте 3. Умножьте на 4. Вычтите 12. Разделите на задуманное. У вас получилось 8.

Угадывание задуманных чисел.

  1. Предложите своим друзьям задумать любые числа. Пусть каждый прибавит к своему задуманному числу 5.
  2. Полученную сумму пусть умножит на 3.
  3. От произведения пусть отнимет 7.
  4. Из полученного результата пусть вычтет ещё 8.
  5. Листок с окончательным результатом пусть каждый отдаст вам. Глядя на листок, вы тут же говорите каждому, какое число он задумал.

(Чтобы угадать задуманное число, результат, написанный на бумажке или сказанный вам устно, разделить на 3).

ЗАКЛЮЧЕНИЕ

Мы вступили в новое тысячелетие! Грандиозные открытия и достижения человечества. Мы много знаем, многое умеем. Кажется чем-то сверхъестественным, что с помощью чисел и формул можно рассчитать полёт космического корабля, «экономическую ситуацию» в стране, погоду на «завтра», описать звучание нот в мелодии. Нам известно высказывание древнегреческого математика, философа, жившего в IV веке д.н.э. – Пифагора– «Всё есть число!».

Описывая старинные способы вычислений и современные приёмы быстрого счёта, я попытался показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.

Изучение старинных способов вычислений показало, что это арифметические действия были трудными и сложными из-за многообразия способов и их громоздкости выполнения.

Современные способы вычислений просты и доступны всем.

При знакомстве с научной литературой обнаружил более быстрые и надежные способы вычислений.

Возможно, что с первого раза у многих не получится быстро, с ходу выполнять эти или другие подсчеты. Пусть сначала не получится использовать прием, показанный в работе. Не беда. Нужна постоянная вычислительная тренировка. Из урока в урок, из года в год. Она поможет приобрести полезные навыки устного счета.

Немецкого ученого Карла Гаусса называли королем математиков. Его математическое дарование проявилось уже в детстве. Однажды в школе (Гауссу было 10 лет) учитель предложил классу сложить все числа от 1 до 100. Пока он диктовал задание, у Гаусса уже был готов ответ. На его грифельной доске было написано: 101·50=5050. Как он вычислил? Очень просто – он применил прием быстрого счета, он складывал первое число с последним, второе с предпоследним и т.д. таких сумм всего 50 и каждая равна 101, поэтому он смог почти мгновенно дать правильный ответ.

1+2+…+50+51+...+99+100=(1+100)+(2+99)+…+(50+51)=101·50=5050. Этот пример, лучше всего показывает, что можно считать быстро и правильно практически устно всем школьникам, для этого всего лишь нужно знать приемы быстрого счета.

Результаты своей работы я оформил в памятку, которую предложу всем своим одноклассникам, также размещу её на школьном тематическом стенде «Это интересно!». Возможно, что с первого раза не у всех получится быстро, с ходу выполнять вычисления с применением этих приемов, даже если сначала не получится использовать прием, показанный в памятке, ничего страшного, просто нужна постоянная вычислительная тренировка. Она и поможет приобрести полезные навыки быстрого счета.

Проведя статистическую обработку данных, были получены следующие результаты:

  1. Уметь считать нужно, потому, что это пригодится в жизни, считают 93% учащихся, чтобы хорошо учиться в школе – 72%, чтобы быстро решать – 61%, чтобы быть грамотным – 34% и не обязательно уметь считать – всего 3%.
  2. Навыки хорошего счета необходимы при изучении математики, считают 100% учащихся, а также при изучении физики – 90%, химии – 80%, информатики – 44%, технологии – 36%.
  3. Приемы быстрого счета знают 16% (много приемов), 25% (несколько приемов), не знают приемов быстрого счета – 59% учащихся.
  4. Применяют приемы быстрого счета 21% учащихся, иногда применяют – 15%.
  5. Хотели бы узнать приемы быстрого счета 93% учащихся.

Выводы:

  1. Знание приемов быстрого счета позволяет упрощать вычисления, экономить время, развивает логическое мышление и гибкость ума.
  2. В школьных учебниках практически нет приемов быстрого счета, поэтому результат данной работы – памятка для быстрого счета будет очень полезной для учащихся 5-6 классов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Ванцян А.Г. Математика: Учебник для 5 класса. - Самара: Издательский дом «Фёдоров», 1999г.
  2. Кордемский Б.А., Ахадов А.А. Удивительный мир чисел: Книга учащихся,- М. Просвещение, 1986г.
  3. Минских Е.М. «От игры к знаниям», М., «Просвещение», 1982г.
  4. Свечников А.А. Числа, фигуры, задачи. М., Просвещение, 1977г. Да Нет Не знаю https://accounts.google.com

В век современных технологий с множеством прогрессивных гаджетов счет в уме все-таки не потерял своей актуальности. Сегодня уже далеко не редкость, когда, чтобы сложить или умножить простейшие числа, человек тянется за телефоном или калькулятором, чтобы особо не напрягаться. И это совершенно неправильно!

Регулярные упражнения ума, а счет туда, как известно, тоже входит, повышают сообразительность и уровень интеллекта человека, что, в дальнейшем, влияет на всю его жизнь. Такие люди намного быстрее ориентируются в различных ситуациях, как минимум, их сложнее обсчитать в магазине или на рынке, что уже является приятным бонусом такой способности.

Надо сказать, что люди, которые умеют считать быстро в уме, необязательно какие-то гении или обладатели особых способностей, все дело в годах практики, а также знания некоторых хитрых приемов, о которых мы поговорим позже. Часто и остро встает такой вопрос, когда нужно научить считать школьника: как замечают родители, в уме ребенок считать не умеет, а вот на бумаге – вполне, пожалуйста.

Если возраст совсем юный, то и на бумаге могут возникнуть проблемы, так как научиться быстро считать в уме? Все зависит от возраста: недаром говорят, что всему свое время, именно в детском возрасте очень важно развивать навыки правильного и быстрого счета.

Как научить ребенка?

Многие родители задаются вопросом, с какого возраста нужно начинать обучать счету? Чем раньше, тем лучше! Обычно первый интерес проявляется у детей в возрасте 5-6 лет, а иногда и раньше, главное не упустить и начать развивать. Считайте все, что придет вам в голову – птичек на ветке, машины на стоянке, люди на лавке или цветочки в грядке. Считать можно любимые игрушки, обязательно обзаведитесь развивающими наборами кубиков с цифрами, переставляйте, проводите первые операции сложения и вычитания на зрительном примере.

Вообще в детском возрасте все должно напоминать игру: например, есть замечательная развивайка «гномики в домике». Придумайте картонную коробку – это будет домик. Возьмите несколько кубиков – объясните ребенку, что это гномики. Поместите в домик одного гномика и скажите – «в домик пришел один гномик». Теперь у ребенка нужно спросить, если в гости к гномику придет еще один, то, сколько теперь гномиков окажется в домике?

Не ждите правильных ответов сразу, но, как только услышите правильный – разместите нужное количество кубиков в коробке, чтобы ребенок не только в уме, но и зрительно видел реальный результат действия. Это и есть первые способы, как развивать в ребенке умения считать в уме.

Как научиться считать в уме в старшем возрасте?

Школьников и взрослых людей уже, конечно, играми не заманишь, да и в этом нет нужды. В старшем возрасте главное – это практика. Чем больше человек будет упражняться, тем легче ему будет выдавать правильные ответы. Второй момент – это идеальное знание таблицы умножения наизусть.

Может вам покажется, что это глупый совет, кто не знает простейшей таблицы? Поверьте, бывает всякое. И третье – забудьте о существовании вспомогательных гаджетов, их можно использовать лишь для проверки полученных результатов.

Невозможно научиться быстро считать в уме по велению волшебной палочки, все-таки придется потрудиться: как минимум, запомнить специальные формулы, которые существенно упрощают такой счет. Во-вторых, научитесь концентрировать свое внимание: ведь при подсчетах придется держать в уме сложные числа, а также их комбинации.

Умножаем на 11

Существует несколько вариантов, как быстро и просто умножить число на 11. Итак, первый способ сразу покажем на примере:

На первом этапе нужно сложить цифры первого множителя, то есть 6+3=9. Следующий шаг – помещаем полученный результат между первым и последним числом множителя, то есть 6(9)3. Вот и результат!

Способ № 2. Разберемся на других числах:

На первом этапе мы снова складываем составляющие множителя: 6+9=15. Что делать, если результат получился двузначный? Все просто: единицу переносим налево, (6+1)_по центру оставляем 5_и дописываем 9. В результате формулы выходит: 7_5_9=759.

Умножаем на 5

Таблица умножения «на 5» запоминается просто, но вот когда дело доходит до сложных чисел, то считать уже не так просто. И здесь есть свой прием: любое число, которое вы хотите умножить на пять, просто поделите пополам. К полученному результату допишите ноль, если же в результате деления получилось дробное число, то просто уберите запятую. Это всегда работает, убедитесь на примере:

Разбираем: 4568/2=2284

К 2284 дописываем 0 и получаем 22840. Не верите, проверьте сами!

Умножаем два сложных числа

Если вам нужно умножить в уме два сложных числа, причем одно из которых четное, то вы можете также воспользоваться интересной формулой:

48×125 это все равно, что:

24×250 это все равно, что:

12×500 это все равно, что:

Складываем в уме сложные натуральные числа

Здесь действует одной интересное правило: если одно из слагаемых увеличить на какое-то число, то это же число нужно вычесть из полученного результата. Например:

550+348=(550+348+2)-2=(550+350)-2=898

Таких приемов и интересных формул, существенно упрощающих счет в уме, очень много, если это вас заинтересует, то множество примеров всегда можно найти на просторах интернета. Но, чтобы действительно добиться результатов, очень важно много практиковаться, поэтому примеры вам в помощь!

Чистая математика является в своём роде поэзией логической идеи. Альберт Эйнштейн

В данной статье мы предлагаем вам подборку простых математических приёмов, многие из которых довольно актуальны в жизни и позволяют считать быстрее.

1. Быстрое вычисление процентов

Пожалуй, в эпоху кредитов и рассрочек наиболее актуальным математическим навыком можно назвать виртуозное вычисление процентов в уме. Самым быстрым способом вычислить определённый процент от числа является умножение данного процента на это число с последующим отбрасыванием двух последних цифр в получившемся результате, ведь процент есть не что иное, как одна сотая доля.

Сколько составляют 20% от 70? 70 × 20 = 1400. Отбрасываем две цифры и получаем 14. При перестановке множителей произведение не меняется, и если вы попробуете вычислить 70% от 20, то ответ также будет 14.

Данный способ очень прост в случае с круглыми числами, но что делать, если надо посчитать, к примеру, процент от числа 72 или 29? В такой ситуации придётся пожертвовать точностью ради скорости и округлить число (в нашем примере 72 округляется до 70, а 29 до 30), после чего воспользоваться тем же приёмом с умножением и отбрасыванием двух последних цифр.

2. Быстрая проверка делимости

Можно ли поровну поделить 408 конфет между 12 детьми? Ответить на этот вопрос легко и без помощи калькулятора, если вспомнить простые признаки делимости, которые нам преподавали ещё в школе.

  • Число делится на 2, если его последняя цифра делится на 2.
  • Число делится на 3, если сумма цифр, из которых состоит число, делится на 3. Например, возьмём число 501, представим его как 5 + 0 + 1 = 6. 6 делится на 3, а значит, и само число 501 делится на 3.
  • Число делится на 4, если число, образованное его последними двумя цифрами, делится на 4. Например, берём 2 340. Последние две цифры образуют число 40, которое делится на 4.
  • Число делится на 5, если его последняя цифра 0 или 5.
  • Число делится на 6, если оно делится на 2 и 3.
  • Число делится на 9, если сумма цифр, из которых состоит число, делится на 9. Например, возьмём число 6 390, представим его как 6 + 3 + 9 + 0 = 18. 18 делится на 9, а значит, и само число 6 390 делится на 9.
  • Число делится на 12, если оно делится на 3 и 4.

3. Быстрое вычисление квадратного корня

Квадратный корень из 4 равен 2. Это посчитает любой. А как насчёт квадратного корня из 85?

Для быстрого приблизительного решения находим ближайшее к заданному квадратное число, в данном случае это 81 = 9^2.

Теперь находим следующий ближайший квадрат. В данном случае это 100 = 10^2.

Корень квадратный из 85 находится где-то в интервале между 9 и 10, а поскольку 85 ближе к 81, чем к 100, то квадратный корень этого числа будет 9 с чем-то.

4. Быстрое вычисление времени, через которое денежный вклад под определённый процент удвоится

Хотите быстро узнать время, которое потребуется, чтобы ваш денежный вклад с определённой процентной ставкой удвоился? Тут также не нужен калькулятор, достаточно знать «правило 72».

Делим число 72 на нашу процентную ставку, после чего получаем приблизительный срок, через который вклад удвоится.

Если вклад сделан под 5% годовых, то потребуется 14 с небольшим лет, чтобы он удвоился.

Почему именно 72 (иногда берут 70 или 69) ? Как это работает? На эти вопросы развёрнуто ответит «Википедия».

5. Быстрое вычисление времени, через которое денежный вклад под определённый процент утроится

В данном случае процентная ставка по вкладу должна стать делителем числа 115.

Если вклад сделан под 5% годовых, то потребуется 23 года, чтобы он утроился.

6. Быстрое вычисление почасовой ставки

Представьте, что вы проходите собеседования с двумя работодателями, которые не называют оклад в привычном формате «рублей в месяц», а говорят о годовых окладах и почасовой оплате. Как быстро посчитать, где платят больше? Там, где годовой оклад составляет 360 000 рублей, или там, где платят 200 рублей в час?

Для расчёта оплаты одного часа работы при озвучивании годового оклада необходимо отбросить от названной суммы три последних знака, после чего разделить получившееся число на 2.

360 000 превращается в 360 ÷ 2 = 180 рублей в час. При прочих равных условиях получается, что второе предложение лучше.

7. Продвинутая математика на пальцах

Ваши пальцы способны на гораздо большее, нежели простые операции сложения и вычитания.

С помощью пальцев можно легко умножать на 9, если вы вдруг забыли таблицу умножения.

Пронумеруем пальцы на руках слева направо от 1 до 10.

Если мы хотим умножить 9 на 5, то загибаем пятый палец слева.

Теперь смотрим на руки. Получается четыре несогнутых пальца до согнутого. Они обозначают десятки. И пять несогнутых пальцев после согнутого. Они обозначают единицы. Ответ: 45.

Если мы хотим умножить 9 на 6, то загибаем шестой палец слева. Получим пять несогнутых пальцев до согнутого пальца и четыре после. Ответ: 54.

Таким образом можно воспроизвести весь столбик умножения на 9.

8. Быстрое умножение на 4

Существует чрезвычайно лёгкий способ молниеносного умножения даже больших чисел на 4. Для этого достаточно разложить операцию на два действия, умножив искомое число на 2, а затем ещё раз на 2.

Посмотрите сами. Умножить 1 223 сразу на 4 в уме сможет не каждый. А теперь делаем 1223 × 2 = 2446 и далее 2446 × 2 = 4892. Так гораздо проще.

9. Быстрое определение необходимого минимума

Представьте, что вы проходите серию из пяти тестов, для успешной сдачи которых вам необходим минимальный балл 92. Остался последний тест, а по предыдущим результаты таковы: 81, 98, 90, 93. Как вычислить необходимый минимум, который нужно получить в последнем тесте?

Для этого считаем, сколько баллов мы недобрали/перебрали в уже пройденных тестах, обозначая недобор отрицательными числами, а результаты с запасом - положительными.

Итак, 81 − 92 = −11; 98 − 92 = 6; 90 − 92 = −2; 93 − 92 = 1.

Сложив эти числа, получаем корректировку для необходимого минимума: −11 + 6 − 2 + 1 = −6.

Получается дефицит в 6 баллов, а значит, необходимый минимум увеличивается: 92 + 6 = 98. Дела плохи. :(

10. Быстрое представление значения обыкновенной дроби

Примерное значение обыкновенной дроби можно очень быстро представить в виде десятичной дроби, если предварительно приводить её к простым и понятным соотношениям: 1/4,1/3, 1/2 и 3/4.

К примеру, у нас есть дробь 28/77, что очень близко к 28/84 = 1/3, но поскольку мы увеличили знаменатель, то изначальное число будет несколько больше, то есть чуть больше, чем 0,33.

11. Трюк с угадыванием цифры

Можно немного поиграть в Дэвида Блэйна и удивить друзей интересным, но очень простым математическим трюком.

  1. Попросите друга загадать любое целое число.
  2. Пусть он умножит его на 2.
  3. Затем прибавит к получившемуся числу 9.
  4. Теперь пусть отнимет 3 от получившегося числа.
  5. А теперь пусть разделит получившееся число пополам (оно в любом случае разделится без остатка).
  6. Наконец, попросите его вычесть из получившегося числа то число, которое он загадал в начале.

Ответ всегда будет 3.

Да, очень тупо, но часто эффект превосходит все ожидания.

Бонус

И, конечно же, мы не могли не вставить в этот пост ту самую картинку с очень крутым способом умножения.