§1. Линейные уравнения с двумя переменными

Инструкция

Способ подстановкиВыразите одну переменную и подставте ее в другое уравнение. Выражать можно любую переменную по вашему усмотрению. Например, выразите «у из второго уравнения:
х-у=2 => у=х-2Затем подставьте все в первое уравнение:
2х+(х-2)=10Перенесите все без «х в правую часть и подсчитайте:
2х+х=10+2
3х=12 Далее, чтобы «х, разделите обе части уравнения на 3:
х=4.Итак, вы нашли «х. Найдите «у. Для этого подставьте «х в то уравнение, из которого вы выразили «у:
у=х-2=4-2=2
у=2.

Сделайте проверку. Для этого подставьте получившиеся значения в уравнения:
2*4+2=10
4-2=2
Неизвестные найдены верно!

Способ сложения или вычитания уравненийИзбавьтесь сразу от -нибудь перемененной. В нашем случае это проще сделать с «у.
Так как в уравнении «у со знаком «+ , а во втором «- , то вы можете выполнить операцию сложения, т.е. левую часть складываем с левой, а правую с правой:
2х+у+(х-у)=10+2Преобразуйте:
2х+у+х-у=10+2
3х=12
х=4Подставьте «х в любое уравнение и найдите «у:
2*4+у=10
8+у=10
у=10-8
у=2По 1-ому способу можете проверить, что корни найдены верно.

Если нет четко выраженных переменных, то необходимо немного преобразовать уравнения.
В первом уравнении имеем «2х, а во втором просто «х. Для того, чтобы при сложении или вычитании «х сократился, второе уравнение умножьте на 2:
х-у=2
2х-2у=4Затем вычтите из первого уравнения второе:
2х+у-(2х-2у)=10-4Заметим, если перед скобкой стоит минус, то после раскрытия поменяйте знаки на противоположные:
2х+у-2х+2у=6
3у=6
у=2«х найдите, выразив из любого уравнения, т.е.
х=4

Видео по теме

При решении дифференциальных уравнений не всегда явно доступен аргумент x (или время t в задачах физических). Тем не менее – это упрощенный частный случай задания дифференциального уравнения, что часто способствует упрощению поиска его интеграла.

Инструкция

Рассмотрите физическую задачу, приводящую к дифференциальному уравнению, в котором отсутствует аргумент t. Это задача о колебаниях массой m, подвешенного на нити длиной r, расположенной в вертикальной плоскости. Требуется уравнение движения маятника, если в начальный был неподвижен и отклонен от состояния равновесия на угол α. Силами следует пренебречь (см. рис. 1a).

Решение. Математический маятник представляет собой материальную точку, подвешенную на невесомой и нерастяжимой нити в точке О. На точку действуют две силы: сила тяжести G=mg и сила натяжения нити N. Обе эти силы лежат в вертикальной плоскости. Поэтому для решения задачи можно применить уравнение вращательного движения точки вокруг горизонтальной оси, проходящей через точку О. Уравнение вращательного движения тела имеет вид, приведенный на рис. 1b. При этом I - момент инерции материальной точки; j - угол поворота нити вместе с точкой, отсчитываемый от вертикальной оси против часовой стрелки; M - момент сил, приложенных к материальной точке.

Вычислите эти величины. I=mr^2, M=M(G)+M(N). Но M(N)=0, так как линия действия силы проходит через точку О. M(G)=-mgrsinj. Знак «-» обозначает, что момент силы направлен в сторону противоположную движению. Подставьте момент инерции и момент силы в уравнение движения и получите уравнение, отображенное на рис. 1с. Сокращая массу, возникает соотношение (см. рис. 1d). Здесь нет аргумента t.

Линейное уравнение — это алгебраическое уравнение. В этом уравнении полная степень составляющих его многочленов равна единице.

Линейные уравнения представляют в таком виде:

В общей форме: a 1 x 1 + a 2 x 2 + … + a n x n + b = 0

В канонической форме: a 1 x 1 + a 2 x 2 + … + a n x n = b.

Линейное уравнение с одной переменной.

Линейное уравнение с 1-ой переменной приводится к виду:

ax + b =0.

Например:

2х + 7 = 0 . Где а=2, b=7;

0,1х - 2,3 = 0. Где а=0,1, b=-2,3;

12х + 1/2 = 0. Где а=12, b=1/2.

Число корней зависимо от a и b :

Когда a = b =0 , значит, у уравнения есть неограниченное число решений, так как .

Когда a =0 , b ≠ 0 , значит, у уравнения нет корней, так как .

Когда a ≠ 0 , значит, у уравнения есть только один корень .

Линейное уравнение с двумя переменными.

Уравнением с переменной x является равенство типа A(x)=B(x) , где A(x) и B(x) — выражения от x . При подстановке множества T значений x в уравнение получаем истинное числовое равенство, которое называется множеством истинности этого уравнения либо решение заданного уравнения , а все такие значения переменной — корни уравнения.

Линейные уравнения 2-х переменных представляют в таком виде:

В общей форме: ax + by + c = 0,

В канонической форме: ax + by = -c,

В форме линейной функции: y = kx + m , где .

Решением либо корнями этого уравнения является такая пара значений переменных (x;y) , которая превращает его в тождество . Этих решений (корней) у линейного уравнения с 2-мя переменными неограниченное количество. Геометрической моделью (графиком) данного уравнения есть прямая y=kx+m .

Если в уравнении есть икс в квадрате, то такое уравнение называется

Линейное уравнение с двумя переменными имеет общий вид ax + by + c = 0. В нем a, b и с – это коэффициенты – какие-то числа; а x и y – переменные – неизвестные числа, которые надо найти.

Решением линейного уравнения с двумя переменными является пара чисел x и y, при которых ax + by + c = 0 – верное равенство.

У конкретного линейного уравнения с двумя переменными (например, 3x + 2y – 1 = 0) имеется множество решений, то есть множество пар чисел, при которых уравнение верно. Линейное уравнение с двумя переменными преобразовывается в линейную функцию вида y = kx + m, которая представляет собой прямую на координатной плоскости. Координаты всех точек, лежащих на этой прямой, являются решениями линейного уравнения с двумя переменными.

Если даны два линейных уравнения вида ax + by + c = 0 и требуется найти такие значения x и y, при которых оба они будут иметь решения, то говорят, что надо решить систему уравнений . Систему уравнений пишут под общей фигурной скобкой. Пример:

У системы уравнений может быть ни одного решения, если прямые, являющиеся графиками соответствующих линейных функций, не пересекаются (то есть параллельны друг другу). Чтобы сделать вывод об отсутствии решение, достаточно преобразовать оба линейных уравнения с двумя переменными к виду y = kx + m. Если в обоих уравнениях k – одно и то же число, то система не имеет решений.

Если система уравнений оказывается состоящей из двух одинаковых уравнений (что может быть очевидно не сразу, а после преобразований), то она имеет бесконечное множество решений. В данном случае говорят о неопределенности.

Во всех остальных случаях система имеет одно решение. Этот вывод можно сделать из того, что две любые непараллельные прямые могут пересечься лишь в одной точке. Именно эта точка пересечения будет лежать и первой прямой и второй, то есть являться решением и первого уравнения и второго. Следовательно являться решением системы уравнений. Однако следует оговорить ситуации, когда на значения x и y накладываются те или иные ограничения (обычно по условию задачи). Например x > 0, y > 0. В таком случае даже если система уравнений будет иметь решение, но оно не будет удовлетворять условию, то делается вывод, что система уравнений не имеет решений при заданных условиях.

Решить систему уравнений можно тремя способами:

  1. Методом подбора. Чаще всего это очень сложно сделать.
  2. Графическим методом. Когда чертятся на координатной плоскости две прямые (графики функций соответствующих уравнений) и находится их точка пересечения. Данный метод может дает не точные результаты, если координаты точки пересечения – дробные числа.
  3. Алгебраическими методами. Они являются универсальными и надежными.

Нам часто встречались уравнения вида ах + b = 0, где а, b - числа, х - переменная. Например, bх - 8 = 0, х + 4 = О, - 7х - 11 = 0 и т. д. Числа а, Ь (коэффициенты уравнения) могут быть любыми, исключает лишь случай, когда а = 0.

Уравнение ах + b = 0, где а , называют линейным уравнением с одной переменной х (или линейным уравнением с одним неизвестным х). Решить его, т. е. выразить х через а и b, мы с вами умеем:

Ранее мы отмечали, что довольно часто математической моделью реальной ситуации служит линейное уравнение с одной переменной или уравнение, которое после преобразований сводится к линейному. А теперь рассмотрим такую реальную ситуацию.

Из городов A и В, расстояние между которыми 500 км, навстречу друг другу вышли два поезда, каждый со своей постоянной скоростью. Известно, что первый поезд вышел на 2 ч раньше второго. Через 3 ч после выхода второго поезда они встретились. Чему равны скорости поездов?

Составим математическую модель задачи. Пусть х км/ч - скорость первого поезда, у км/ч - скорость второго поезда. Первый был в пути 5 ч и, значит, прошел путь bх км. Второй поезд был в пути 3 ч, т.е. прошел путь Зу км.

Их встреча произошла в пункте С. На рисунке 31 представлена геометрическая модель ситуации. На алгебраическом языке ее можно описать так:

5х + Зу = 500


или
5х + Зу - 500 = 0.

Эту математическую модель называют линейным уравнением с двумя переменными х, у.
Вообще,

ах + by + с = 0,

где а, b, с - числа, причем , - линейное уравнение с двумя переменными х и у (или с двумя неизвестными х и у).

Вернемся к уравнению 5х + Зу = 500. Замечаем, что если х = 40, у = 100, то 5 40 + 3 100 = 500 - верное равенство. Значит, ответ на вопрос задачи может быть таким: скорость первого поезда 40 км/ч, скорость второго поезда 100 км/ч. Пару чисел х = 40, у = 100 называют решением уравнения 5х + Зу = 500. Говорят также, что эта пара значений (х; у) удовлетворяет уравнению 5х + Зу = 500.

К сожалению, это решение не единственно (мы ведь все любим определенность, однозначность). В самом деле, возможен и такой вариант: х = 64, у = 60; действительно, 5 64 + 3 60 = 500 - верное равенство. И такой: х = 70, у = 50 (поскольку 5 70 + 3 50 = 500 - верное равенство).

А вот, скажем, пара чисел х = 80, у = 60 решением уравнения не является, поскольку при этих значениях верного равенства не получается:

Вообще, решением уравнения ах + by + с = 0 называют всякую пару чисел (х; у), которая удовлетворяет этому уравнению, т. е. обращает равенство с переменными ах + by + с = 0 в верное числовое равенство. Таких решений бесконечно много.

Замечание. Вернемся еще раз к уравнению 5х + Зу = 500, полученному в рассмотренной выше задаче. Среди бесконечного множества его решений имеются, например, и такие: х = 100, у = 0 (в самом деле, 5 100 + 3 0 = 500 - верное числовое равенство); х = 118, у = - 30 (так как 5 118 + 3 (-30) = 500 - верное числовое равенство). Однако, являясь решениями уравнения , эти пары не могут служить решениями данной задачи, ведь скорость поезда не может быть равной нулю (тогда он не едет, а стоит на месте); тем более скорость поезда не может быть отрицательной (тогда он едет не навстречу другому поезду, как сказано в условии задачи, а в противоположную сторону).

Пример 1. Изобразить решения линейного уравнения с двумя переменными х + у - 3 = 0 точками в координатной плоскости хОу.

Решение. Подберем несколько решений заданного уравнения, т. е. несколько пар чисел, которые удовлетворяют уравнению: (3; 0), (2; 1), (1; 2) (0; 3), (- 2; 5).

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Тема: Линейная функция

Урок: Линейное уравнение с двумя переменными и его график

Мы познакомились с понятиями координатной оси и координатной плоскости. Мы знаем, что каждая точка плоскости однозначно задает пару чисел (х; у), причем первое число есть абсцисса точки, а второе - ордината.

Мы будем очень часто встречаться с линейным уравнением с двумя переменными, решением которого и есть пара чисел, которую можно представить на координатной плоскости.

Уравнение вида:

Где a, b, с - числа, причем

Называется линейным уравнением с двумя переменными х и у. Решением такого уравнения будет любая такая пара чисел х и у, подставив которую в уравнение мы получим верное числовое равенство.

Пара чисел будет изображаться на координатной плоскости в виде точки.

У таких уравнений мы увидим много решений, то есть много пар чисел, и все соответствующие точки будут лежать на одной прямой.

Рассмотрим пример:

Чтобы найти решения данного уравнения нужно подобрать соответствующие пары чисел х и у:

Пусть , тогда исходное уравнение превращается в уравнение с одной неизвестной:

,

То есть, первая пара чисел, являющаяся решением заданного уравнения (0; 3). Получили точку А(0; 3)

Пусть . Получим исходное уравнение с одной переменной: , отсюда , получили точку В(3; 0)

Занесем пары чисел в таблицу:

Построим на графике точки и проведем прямую:

Отметим, что любая точка на данной прямой будет решением заданного уравнения. Проверим - возьмем точку с координатой и по графику найдем ее вторую координату. Очевидно, что в этой точке . Подставим данную пару чисел в уравнение. Получим 0=0 - верное числовое равенство, значит точка, лежащая на прямой, является решением.

Пока доказать, что любая точка, лежащая на построенной прямой является решением уравнения, мы не можем, поэтому принимаем это за правду и докажем позже.

Пример 2 - построить график уравнения:

Составим таблицу, нам достаточно для построения прямой двух точек, но возьмем третью для контроля:

В первой колонке мы взяли удобный , найдем у:

, ,

Во втором столбике мы взяли удобный , найдем х:

, , ,

Возьмем для проверки и найдем у:

, ,

Построим график:

Умножим заданное уравнение на два:

От такого преобразования множество решений не изменится и график останется таким же самым.

Вывод: мы научились решать уравнения с двумя переменными и строить их графики, узнали, что графиком подобного уравнения есть прямая и что любая точка этой прямой является решением уравнения

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

2. Портал для семейного просмотра ().

Задание 1: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 960, ст.210;

Задание 2: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 961, ст.210;

Задание 3: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 962, ст.210;